
Spring Semester 2013–2014

MATH31072/MATH41072/MATH61072 Algebraic Topology

May/June Examination Solutions and Feedback

General comment. On the whole people lost marks on this examination because of the parts of
questions they couldn’t do or did inadequately. There wasn’t a lot written which was completely
wrong.

A1. (a) A geometric simplicial surface is a finite set K of triangles in some Rn satisfying the
following properties.

(i) The intersection condition: Two triangles in K are either (i) disjoint, (ii) intersect in a
common vertex, or (iii) intersect in a common edge.

(ii) The connectivity condition: For each pair of vertices there is a path along edges from one
to the other.

(iii) The link condition: For each vertex v, the link of the vertex, i.e. the set of edges opposite
v in the triangles containing v, form a simple closed polygon.

[5 marks, bookwork]

(b) An orientation of a triangle is a cyclic ordering of the vertices. Two triangles with a common
edge are coherently oriented if the orientations induced on the common edge are opposite. A
simplicial surface is orientable if all of the triangles can be oriented so that each pair of triangles
with a common edge are coherently oriented.

[3 marks, bookwork]

(c) The statement that this is a topological property means that, given two simplicial spaces
K1 and K2, if the underlying spaces |K1| and |K2| are homeomorphic, then K1 is orientable if
and only if K2 is orientable.

[2 marks, bookwork]
[Total: 10 marks]

[This was pretty well done apart from some rather confused statements for the last part.]

A2. A geometric simplicial complex is a non-empty finite set K of simplices in some Euclidean
space Rn such that

(i) the face condition: if σ ∈ K and τ ≺ σ then τ ∈ K;

(ii) the intersection condition: if σ1 and σ2 ∈ K then σ1 ∩ σ2 ∈ K and σ1 ∩ σ2 ≺ σ1,
σ1 ∩ σ2 ≺ σ2.

[2 marks, bookwork]

The underlying space |K| of a simplicial complex K is given by

|K| =
⋃
σ∈K

σ ⊂ Rn

with the subspace topology. [1 mark, bookwork]

A realization of the given abstract complex as a geometric complex is as follows.
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v3

v1 v4

v2

[2 marks, similar to question set]

The Euler characteristic of a simplicial complex K is given by the alternating sum

χ(K) =
∞∑
r=0

(−1)rnr

where nr is the number of simplices of dimension r. [1 mark, bookwork]

In this case, n0 = 4, n1 = 6 and n2 = 1 and so χ(K) = 4− 6 + 1 = −1.
[1 mark, similar to question set]

The first barycentric subdivision is as follows.

v3

v1 v4

v2

[2 marks, similar to question set]

This also has Euler characteristic −1 since the Euler characteristic is unchanged by barycentric
subdivision (or because it is a topological invariant and the underlying space is unchanged) [It
can also be found by counting simplices.]. [1 mark, simple application]

[Total: 10 marks]

[Many people got the first barycentric subdivision wrong usually with not enough simplices.]

A3. For r ∈ Z. the r-chain group of K, denoted Cr(K), is the free abelian group generated by
Kr, the set of (non-empty) oriented r-simplices of K subject to the relation σ+ τ = 0 whenever
σ and τ are the same simplex with the opposite orientations. [2 marks, bookwork]

For each r ∈ Z we define the boundary homomorphism dr : Cr(K)→ Cr−1(K) on the generators
of Cr(K) by

dr(〈v0, v1, . . . , vr〉) =

r∑
i=0

(−1)i〈v0, v1, . . . , v̂i, . . . , vr〉

and then extend linearly. Here v̂i indicates that this vertex should be omitted.
[2 marks, bookwork]

The kernel of the boundary homomorphism dr : Cr(K) → Cr−1(K) is called the r-cycle group
of K and is denoted Zr(K). Thus

Zr(K) = {x ∈ Cr(K) | dr(x) = 0 }.
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[1 mark, bookwork]

The image of the boundary homomorphism dr+1 : Cr+1(K) → Cr(K) is called the r-boundary
group of K and is denoted Br(K). Thus

Br(K) = {x ∈ Cr(K) | x = dr+1(y) for some y ∈ Cr+1(K) }.

[1 mark, bookwork]

In the case of K in Question A.3 we can see that

• Z1(K) is generated by x1 = 〈v1, v2〉 − 〈v1, v3〉+ 〈v2, v3〉, x2 = 〈v1, v2〉 − 〈v1, v3〉+ 〈v2, v3〉
and x3 = 〈v2, v3〉 − 〈v2, v4〉+ 〈v3, v4〉.

• B1(K) is generated by x3.

[2 marks, similar to questions set]

The kernel of the homomorphism Z1(K) → Z2 defined by λ1x1 + λ2x2 + λ3x3 7→ (λ1, λ2) has
kernel generated by x3 and so is B1(K). Hence by the First Isomorphism Theorem this induces
an isomorphism H1(K) = Z1(K)/B1(K) ∼= Z2. [2 marks, similar to questions set]

[Total: 10 marks]

[Those who had covered this material got most of the marks here.]

A4. (a) The underlying space of K = ∆̄7 is the 7-simplex ∆7 which is a convex subset of R8

and so is contractible. Hence it has the same homology groups as a point:

Hi(K) =

{
Z for i = 0,
0 otherwise.

[3 marks, standard example]

(b) For subcomplex L of K, n0 = 8, n1 =
(
8
2

)
= 28, n2 =

(
8
3

)
= 56 and n3 =

(
8
4

)
= 70 and so

the Euler characteristic χ(L) = 8− 28 + 56− 70 = −34.
[2 marks, similar to example set]

Now L is 3-dimensional and so and so has trivial homology groups in dimensions above 3. In
dimensions 0 6 i 6 3, Ci(L) = Ci(K) with the same boundary homomorphims between these
groups. Hence in dimensions 0 6 i 6 2, Hi(L) = Hi(K). However, in dimension 3, B3(L) = 0
since C4(L) = 0 and so H3(L) = Z3(L) a free group of rank β3, the third Betti number of L.

Now using the formula χ(L) =
∑3

i=0(−1)iβi(L) we see that −34 = 1 − β3 (since β1 = β2 = 0)
and so β3 = 35. Hence

Hi(L) =


Z for i = 0,
Z35 for i = 3,
0 otherwise.

[5 marks, similar to example set]
[Total: 10 marks]

[Quite a few people got the sums wrong at the beginning of part (b) forgetting that a 7-simplex
has eight vertices. There was some confusion about the Betti numbers and their relationship to
the homology groups so this led to confused answers to the last part.]
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B5. (a) To write down a symbol respresenting a topological polygon with edges identified in
pairs a letter is assigned to each edge of the polygon, assigning the same letter to two edges
if and only if they are to identified. starting at any vertex, write down the letters in sequence
going around the boundary, assigning the exponent −1 at the second appearance if the order
to the vertices is reversed. [4 marks, bookwork]

(b) The classification theorem states that every closed surface is representatable by one and
only one of the following symbols:

(i) xx−1,

(ii) x1y1x
−1
1 y−11 x2y2x

−1
2 y−12 . . . xgygx

−1
g y−1g for some integer g > 1,

(iii) x1x1x2x2 . . . xgxg for some integer g > 1.

[2 marks, bookwork]

(c) Gluing the discs together along edges e, f and i gives a polygon as follows.
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This may be represented by the symbol abcda−1b−1ghc−1d−1g−1h−1.
[3 marks, similar to question set]

We may now reduce the symbol corresponding to this identification space to standard form
using the standard algorithm as follows.

abcd(a−1)(b−1ghc−1)d−1g−1h−1

∼ a(bcd)(b−1ghc−1)a−1d−1g−1h−1 (using . . . xUV x−1 . . . ∼ . . . xV Ux−1 . . .)
∼ ab−1ghc−1bc(da−1d−1)g−1h−1 (using . . . xUV x−1 . . . ∼ . . . xV Ux−1 . . .)
∼ (ada−1d−1)b−1gh(c−1bc)bcg−1h−1 (using xUx−1 commutes with everything)

∼ (ada−1d−1)(b−1c−1bc)(ghg−1h−1) (using xUx−1 commutes with everything)

∼ x1y1x
−1
1 y−11 x2y2x

−1
2 y−12 x3y3x

−1
3 y−13 (relabelling).

[5 marks, similar to question set, standard algorithm]

Hence the surface is orientable of genus 3. [1 mark, similar to question set]
[Total: 15 marks]

[This was reasonably well done on the whole. Some of the answers to (a) were rather confused
or not very clear. Some people didn’t understand the rules for reducing a symbol to standard
form and others who could do the reduction were not very good at explaining what they were
doing.]

B6. The intersection condition is automatically satisfied since the vertices are linearly inde-
pendent. [2 marks, standard result from course]
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The connectivity condition is satisfied because (for example) of the following edges linking all
the vertices.

v1 v2 v3 v6 v8

v7
v4 v5 v9

[1 mark, similar to questions asked]

Checking the link condition we obtain the following.

v2 v3

v5v4

link(v1)

v1 v3

v6v7v4

link(v2)

v1 v2 v6 v8

v9v4v7v5

link(v3)

v1 v2 v7

v3v9v5

link(v4)

v1 v4

v9v7v3

link(v5)

v2 v3

v8v7

link(v6)

v2 v4 v3 v5

v9v8v6

link(v7)

v3 v6

v7v9

link(v8)

v3 v4

v5v7v8

link(v9)

These are all simple closed polygons.

Hence K is a simplicial surface. [6 marks, similar to questions asked]

v(K) = 9, f(K) = 16 and e(K) = 16× 3/2 = 24 (since each edge appears twice).
Hence χ(K) = 9− 24 + 16 = 1. [2 marks, similar to questions asked]

Since the Euler characteristic of K is odd it is necessarily non-orientable since the Euler char-
acteristic of the oriented surfaces is always even. [2 marks, similar to questions
asked]

Since χ(Pg) = 2 − g this means that |K| the underlying space of K, is homeomorphic to P1,
the non-orientable surface of genus 1, i.e. the projective plane.

[2 mark, similar to questions asked]
[Total: 15 marks]

[You do need to say something about the location of the vertices in order to explain why the
intersection condition holds. Checking all nine links is a bit tedious but it is necessary to do
them all. It is not necessary to check the definition of orientability since the Euler characteristic
is odd.]

B7. Write vi for the ith standard basis vector in R9, 1 6 i 6 9. Let K be the set of 2-simplices
〈vi, vj , vk〉 where (i, j, k) are the vertices of a triangle in the triangulation of the unit square I2

shown below together with their faces. Then K is a simplicial complex with underlying space
|K| homeomorphic to the Klein bottle.
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The intersection condition is automatic since the vertices are linearly independent vectors and
the face condition is automatic by definition.

Now we can define a continuous function f : I2 → |K| by mapping the point i in the unit square
(in the above picture) by i 7→ vi and extending linearly over each triangle. This is continuous
by the Gluing Lemma (since the triangles are all closed subsets of I2) and induces a continuous
bijection F : I2/∼ → |K| which is therefore a homeomorphism where ∼ is the equivalence
relation given by (s, 0) ∼ (s, 1) and (0, t) ∼ (1, 1− t) which is known to give the Klein bottle.

[6 marks, similar to bookwork]

Since K is clearly connected H0(K) ∼= Z and since K is 2-dimensional Hi(K) = 0 for i > 2 and
i < 0.

To find Z1(K) notice that if x ∈ Z1(K) then x ∼ x′ where x′ only involves edges corresponding
to the edges of the template together with three ‘internal’ edges, say 〈v4, v5〉, 〈v6, v7〉 and
〈v3, v9〉. Since other edges can be eliminated. For example 〈v2, v4〉 ∼ 〈v1, v4〉 − 〈v1, v2〉 since
d2〈v1, v2, v4〉 = 〈v2, v4〉 − 〈v1, v4〉 + 〈v1, v2〉 ∼ 0. However, since x ∈ Z1(K), x′ ∈ Z1(K) and so
x′ cannot involve these internal edges since they have vertices which would cancel out on taking
the boundary.

Considering the edges corresponding the boundary of the template we see that the cycles con-
taining these edge are generated by x1 = 〈v1, v2〉+〈v2, v3〉−〈v1, v3〉 and x2 = 〈v1, v4〉+〈v1, v7〉−
〈v1, 〉v7. Let V be the subgroup of C1(K) generated by x1 and x2. Then Z1(K) = V +B1(K).

To find V ∩ B1(K), if y ∈ C2(K) such that d2(y) ∈ V then the edges corresponding to the
internal edges of the template must cancel out and so y must be a multiple of the 2-chain
z = 〈v− 1, , v2, v4〉+ 〈v2, v5, v4〉+ · · · the sum of all of the 2-simplices oriented clockwise in the
template.

But d2(z) = x1 − x2 − x1 − x2 = 2x2. Hence V ∩B1(K) ∼= Z generated by 2x2.

Thus

H1(K) = Z1(K)/B1(K) =
(
V +B1(K)

)
/B1(K) ∼= V/

(
V ∩B1(K)

) ∼= Z× Z2

generated by [x1] and [x2], since the kernel of the homomorphism f : V → Z × Z2 given by
λ1x1 + λ2x2 7→ (λ1, [λ2]2) is generated by 2x2 and so is V ∩B1(K).

For H2(K) notice that, by the above argument, if y ∈ Z2(K) then, all of the edges corresponding
to the internal edges of the template must cancel out and so y is a multiple of z. But d2(z) 6= 0
and so Z2(K) = 0 which means that H2(K) = 0.

Conclusion; Hi(K) =


Z for i = 0,
Z× Z2 for i = 1,
0 otherwise.

[9 marks, standard example]

[Total: 15 marks]

[On the whole the first part of this question was badly done with most people not constructing a
homeomorphism. The second part is a standard type of calculation from the course and those
who who attempted this question seem to have the basic ideas.]

B8. (b) A map of simplicial complexes s : K → L is induced by a map of the vertex sets
s0 : V (K)→ V (L) so that if {v0, v1, . . . , vr} is an r-simplex of K then {f0(v0), f0(v1), . . . , f0(vr)}
is a simplex in L (possibly of lower dimension since f0 need not be an injection on the vertices
of the simplex. Such a map of the vertices may be extended by linearity over the simplices
and gives a continuous function |s| : |K| → |L| by the Gluing Lemma. A function between the
underlying spaces which arises in this way is called a simplicial map. [3 marks, bookwork]
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We say that a simplicial map |s| : |K| → |L| is a simplicial approximation to a continuous map
f : |K| → |L| if, for each point x ∈ |K|, the point |s|(x) belongs to the carrier of f(x) i.e.
simplex of L whose interior contains f(x). [2 marks, bookwork]

To see that |s| ' f , we may define a homotopyH : |K|×I → |L| byH(x, t) = (1−t)|s|(x)+tf(x).
This formula makes sense since both |s|(x) and f(x) lie in the simplex of L whose interior
contains f(x) and so, since simplices are convex, the line interval between them does. It is
clearly a continuous function. [2 marks, bookwork]

(b) For the particular example, any simplicial approximation to f must map 0→ 0 and 1→ 1
since the carrier of f(0) = 0 is the vertex 〈0〉 and the carrier of f(1) = 1 is the vertex 〈1〉.
The only simplicial map s : K → K which does this is the identity map since s0(0) and s0(1/2)
must be the vertices of a simplex in K and s0(1/2) and s0(1) must be the vertices of a simplex
of K. But this map is not a simplicial approximation to f(x) = x2 since, for x = 1/

√
2,

f(x) = 1/2 which has carrier the vertex 〈1/2〉. But |s|(1/
√

2) = 1/
√

2 does not lie in this
0-simplex. [Alternatively, for 1/2 < x < 1/

√
2 (only one value is needed), 1/4 < f(x) < 1/2

and so the carrier of f(x) is the edge 〈0, 1/2〉. But for these values of x, |s|(x) = x > 1/2 and
so does not lie in this simplex.] [4 marks, similar to example set]

However, if K ′ is the first barycentric subdivision of K, with vertices 0, 1/4, 1/2, 3/4, 1, a
simplicial approximation is given by the vertex map s0(0) = 0, s0(1/4) = 0 or 1/2, s0(1/2) =
1/2, s0(3/4) = 1/2, s0(1) = 1 [two possibilities as indicated], for if 0 < x < 1/

√
2 then the

carrier of f(x) is the edge 〈0, 1/2〉 and |s|(x) lies in this edge (since 1/
√

2 < 3/4), if x = 1/
√

2
the carrier of f(x) is the vertex 〈1/2〉 and |s|(1/

√
2) = 1/2, and finally, if 1/

√
2 < x < 1 then

the carrier of f(x) is the edge 〈1/2, 1〉 which does contain |s|(x).
[4 marks, similar to example set]

[Total: 15 marks]

[There were some good answers to this question. If you hadn’t got the idea of the Simplicial
Approximation Theorem you probably avoided this question.]

C9. (a) A p-symmetry of a topological surface S is a homeomorphism f : S → S such that
its p-fold interate fp = f ◦ · · · ◦ f = I : S → S, the identity map but f 6= I. It is free when
f(x) 6= x for all x ∈ S.

The Klein Bottle, P2 may be obtained from the unit square I2 with the identifications (x, 0) ∼
(1− x, 1) and (0, y) ∼ (1, y). For p > 2, a free p-symmetry on the Klein bottle is induced by

f(x, y) =

{
(x, y + 2/p), 0 6 y 6 (p− 2)/p
(1− x, y − (p− 2)/p), (p− 2)/p 6 y 6 1.

[5 marks, problem set]

(b) Let U be an open set as in the question. Since S is a surface there is a closed set A1 ⊂ U
such that A1

∼= B2. Choose a closed set A2 ⊂ P 2 such that A2
∼= B2. Then we can form

S′ = S#Pp as the connected sum of S with p copies of P 2 by removing the interiors of the
sets f i(A1), 0 6 i 6 p − 1, from S, taking p copies of P 2 with the interior of A2 removed and
identifying the boundary circles. Then the p-symmetry f : S → S extends to a p-symmetry
f ′ : S′ → S′ which cyclically permutes the p projective planes. Since f is free so is f ′.

[5 marks, problem set, similar to bookwork]

(c) If p divides g−2, g−2 = pr and so g = 2+pr. Hence, if we apply the construction described
in (b) r times to the free symmetry on P2 described in (a), we obtain a free p-symmetry on
Pg. [2 marks, problem set]

(d) If f : S → S is free p-symmetry on a closed surface S then it can be shown that S1 =
S/x ∼ f i(x) is also a closed surface. A triangulation of S1 induces a triangulation of S with
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v(S) = pv(S1), e(S) = pe(S1), f(S) = pf(S1) and so χ(S) = pχ(S1). If S = Pg then χ(S) =
2− g = pχ(S1) and so 2− g is divisible by p. Thus, if g− 2 is not divisible by p there is no free
symmetry on Pg. [5 marks, bookwork]

[Total: 17 marks]

[Most people had covered this much of the additional reading. Some people were a bit confused
about the construction in (b).]

C10. (a) A graph is a 1-dimensional simplicial complex. A graph G can be embedded in a
topological surface S if the realization of G is homeomorphic to a subspace of S. The path-
components of the complement of this subspace are called the regions of the embedding. If each
of the regions is homeomorphic to an open disc then we say that we have a 2-cell embedding.

[3 marks, bookwork]

Given a 2-cell embedding of a connected graph G with v vertices and e edges in a topological
surface S we can extend the embedded graph to a triangulation of S as follows. Each region of
the embedding together with the adjacent edges and vertices is a topological polygon. We can
triangulate this polygon by adding a new vertex in the interior of the region and joining this
by edges to the vertices of the polygon. Thus if the polygon has n edges and vertices, we will
add one vertex, add n edges and divide the polygon into n triangular regions. So for the new
embedded graph G′ we obtain by the process v′−e′+r′ = (v+1)−(e+n)+(r+n−1) = v−e+r.
Applying this process to each region of the 2-cell embedding we obtain a triangulation of the
surface and so v − e+ r = χ(S). [5 marks, bookwork]

(b) Since each region has at least three edges and each edge is on the boundary of two regions,
2e > 3r. Hence χ(S) 6 v − e + r 6 v − e + 2e/3 = v − e/3. Hence 2e 6 6v − 6χ(S) so that
2e/v 6 6(1− χ(S)/v). [2 marks, exercise set]

(c) A colouring of a graph is the association of function c : V (G) → A to a set A such that, if
〈v1, v2〉 is an edge of the graph then c(v1) 6= c(v2). The chromatic number of a graph G is the
cardinality of the smallest set A so that it has a colouring V (G)→ A. [2 marks, bookwork]

We prove that G must have a vertex of degree 6 N−1 so that the result follows by induction on
the number of vertices since, if we suppose that graphs with a smaller number of vertices have
a chromatic number no greater than N then we can extend a colouring of the graph without
this vertex to the whole graph by selecting a colour for this vertex different from the colours of
the adjacent vertices. This is certainly possible if v 6 N and so we may suppose that v > N
which means that v > x.

Hence, from the result of (b), the average vertex degree 2e/v 6 6(1− χ(S)/v) 6 6(1− χ(S)/x)
(since χ(S) 6 0 and v > x so that χ(S)/v > χ(S)/x) = x − 1 (since x2 − 7x + 6χ(S) = 0 so
that 6

(
x − χ(S)

)
= x2 − x) and so G must have a vertex of degree 6 x − 1 and so of degree

6 N − 1 as required to carry out the inductive step. [6 marks, bookwork]
[Total; 18 marks]

[Some people didn’t seem to have covered this bit of the additional reading. There was a bit
of howler in the proof in the notes for the result at the end of (a) which was pretty obvious.
However, the howler was faithfully reproduced by quite a few people in spite of not really making
sense!]

C11. (a) A triangulable pair of spaces (X,A) is a topological space X with a subspace A such
that there is a homeomorphism h : X → |K|, the underlying space of a simplicial complex K,
with h(A) = |L| the underlying space of a subcomplex L of K. [1 mark, bookwork]

A reduced homology theory assigns to each non-empty triangulable space X a sequence of
groups H̃n(X) (for n ∈ Z) and for each continuous map of triangulable spaces f : X → Y a
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sequence of homomorphisms f∗ : H̃n(X)→ H̃n(Y ) such that

(i) for continuous functions f : X → Y and g : Y → Z, g∗ ◦ f∗ = (g ◦ f)∗ : H̃n(X) → H̃n(Z)
for all n;

(ii) for the identity map I : X → X, I∗ = I : H̃n(X)→ H̃n(X) the identity map for all n;

(iii) [homotopy axiom] for homotopic maps f ' g : X → Y , f∗ = g∗ : H̃n(X)→ H̃n(Y ) for all
n;

(iv) [exactness axiom] for any triangulable pair (X,A) there are boundary homomorphisms
∂ : H̃n(X/A)→ H̃n−1(A) for all n which fit into a long exact sequence

. . .→ H̃n(A)
i∗→ H̃n(X)

q∗→ H̃n(X/A)
∂→ H̃n−1(A)→ . . .

and such that for any continuous function of triangulable pairs f : (X,A) → (Y,B) in-
ducing a map of quotient spaces f̄ : X/A→ Y/B the following diagram commutes for all
n;

H̃n(X/A)
f̄∗- H̃n(Y/B)

H̃n−1(A)

∂

?
f∗- H̃n−1(B)

∂

?

(v) [dimension axiom] H̃0(S
0) ∼= Z and H̃n(S0) = 0 for all n 6= 0.

[7 marks, bookwork]

(c) Suppose that f : X → Y is a homotopy equivalence with homotopy inverse g : Y → X. Then

g∗ ◦ f∗ = (g ◦ f)∗ (using (i)) = I∗ (using (iii)) = I : H̃n(X)→ H̃n(X) (by (ii))

and similarly f∗ ◦ g∗ : I : H̃n(Y )→ H̃n(X) so that f∗ : H̃n(X)→ H̃n(Y ) is an isomorphism.
[2 marks, exercise set]

(d) Now consider the pair (Dn, Sn−1) for which Dn/Sn−1 ∼= Sn. Then the exactness axiom
gives the long exact sequence

. . .→ H̃i(D
n)

q∗→ H̃i(S
n)

∂→ H̃i−1(S
n−1)

i∗→ H̃i−1(D
n) . . .

The space Dn is contractible (homotopy equivalent to a point) and so by the above all of
its homology groups are trivial. Hence from this exact sequence we see that the boundary
homomorphisms

∂ : H̃i(S
n)→ H̃i−1(S

n−1)

are all isomorphisms. Hence, iterating these maps and using the dimension axiom we see that

H̃i(S
n) ∼= H̃i−n(S0) ∼= Z for i = n, 0 for i 6= n.

[5 marks, exercise set]
[Total: 15 marks]

[Again some people hadn’t covered this part of the additional reading.]
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