
MATH3/4/61072

SECTION A A

Answer ALL FOUR questions.

A1.

(a) Define what is meant by a topological manifold.

(b) State the classification theorem for connected compact topological surfaces.

(c) Give an example of two distinct surfaces from the classification theorem with the same Euler
characteristic.

[10 marks]

Solution

(a) Let n be a non-negative integer. An n-dimensional (topological) manifold is a topological space
X which

(i) is Hausdorff,

(ii) is second countable (i.e. has a countable basis), and

(iii) is locally Euclidean, i.e. each point x ∈ X lies in an open subset V in X which is homeo-
morphic to an open subset U ⊂ Rn (with the usual topology).

[5 marks, bookwork]

(b) Every path-connected compact topological surface (or closed surface) is homeomorphic to one
and only one of:

(i) S2,

(ii) Tg for some g > 1 (where T1 = S1 × S1 and Tg+1 = Tg#T1 for g > 1),

(iii) Pg for some g > 1 (where P1 = P 2 and Pg+1 = Pg#P1 for g > 1). [3 marks, bookwork]

(c) χ(Tk) = 2 − 2k = χ(P2k) = 2 − 2k. Hence, for every choice of k > 1 this gives a suitable
example. [2 marks, bookwork]

[Total: 10 marks]

Feedback: The question was meant to be easy. The definition of a manifold was fundamental for
the first part of the course (on surfaces). However, quite a few people where not able to reproduce
it (correctly). Some people forgot to explain what locally Euclidean means. In part (b) some people
mixed up the two classification theorems for surfaces and surface symbols (which of course are very
much related to each other). Part (c) was generally done well.

A2.

(a) Define what it meant by a geometric simplicial complex K and its underlying space |K|.
[The notions of geometric simplex and face of a simplex may be used without definition.]
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(b) An abstract simplicial complex has vertices v1, v2, v3, v4, v5 and simplices {v1, v2, v3}, {v2, v4},
{v4, v5}, {v3, v5}, {v2, v5} and their faces. Draw a realisation K of this simplicial complex as a
geometric simplicial complex in R2.

(c) Define the Euler characteristic of a simplicial complex and calculate the Euler characteristic of
the simplicial complex in part (b).

(d) Draw the first barycentric subdivision K ′ of the geometric simplicial complex K in part (b).

(e) Find the Euler characteristic of K ′.

[10 marks]

Solution

(a) A (geometric) simplicial complex is a non-empty finite set K of simplices in some Euclidean
space Rn such that

(a) the face condition: if σ ∈ K and τ ≺ σ then τ ∈ K,

(b) the intersection condition: if σ1 and σ2 ∈ K then σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 ≺ σ1,
σ1 ∩ σ2 ≺ σ2.

[2 marks, bookwork]

The underlying space |K| of a simplicial complex K is given by

|K| =
⋃
σ∈K

σ ⊂ Rn

with the subspace topology. [1 mark, bookwork]

(b) A realisation is given by the following picture

v1

v2

v3

v4

v5

[2 marks, similar to question set]

(c) The Euler characteristic of a simplicial complex K is given by the alternating sum

χ(K) =
∞∑
r=0

(−1)rnr

where nr is the number of simplices of dimension r. In this case χ(K) = 5− 7 + 1 = −1. [2
marks, bookwork]
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(d) The barycentric subdivision is given by the following picture

v1

v2

v3

v4

v5

[2 marks, similar to question set]

(e) The Euler characteristic is again -1, since barycentric subdivisions does not change the Euler
characteristic [It can also be found by counting simplices.] [1 mark, simple application]

[Total: 10 marks]

Feedback: The question was generally done well. Some people forgot the definition of the under-
lying space.

A3.

(a) Define what is meant by the r-chain group Cr(K), the r-cycle group Zr(K), and the r-boundary
group Br(K) of a simplicial complex K.

(b) Write down, without proof, generators for the groups Z1(K) and B1(K) of the simplicial
complex K in Question A2(b). Hence, find the first homology group H1(K).

[10 marks]

Solution

(a) For r ∈ Z. the r-chain group of K, denoted Cr(K), is the free abelian group generated by Kr,
the set of oriented r-simplices of K subject to the relation σ+ τ = 0 whenever σ and τ are the
same simplex with the opposite orientations. [2 marks, bookwork]

For each r ∈ Z we define the boundary homomorphism dr : Cr(K)→ Cr1(K) on the generators

dr(〈v0, . . . , vr〉) =
r∑
i=0

(−1)i〈v0, . . . , vi−1, vi+1, . . . , vr〉

and then extend linearly. [2 marks, bookwork]

The kernel of the boundary homomorphism dr is called the r-cycle group and denoted by
Zr(K), i.e. Zr(K) = {c ∈ Cr(K) | dr(c) = 0}. [1 mark, bookwork]

The image of the boundary homomorphism dr+1 is called the r-boundary group and is denoted
by Br(K), i.e. Br(K) = {dr+1(c) | c ∈ Cr+1(K)}. [1 mark, bookwork]
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(b) Z1(K) ∼= Z3 is generated by

z1 = 〈v1, v3〉+ 〈v3, v2〉+ 〈v2, v1〉
z2 = 〈v3, v5〉+ 〈v5, v2〉+ 〈v2, v3〉
z3 = 〈v5, v4〉+ 〈v4, v2〉+ 〈v4, v5〉

B1(K) ∼= Z is generated by z1. [2 marks, similar to question set]

We obtain
H1(K) = Z1(K)/B1(K) = (Zz1 ⊕ Zz2 ⊕ Zz3)/Zz1

∼= Z2.

[2 marks, similar to question set]

[Total: 10 marks]

Feedback: The question was generally done well. The most common mistake in (a) was a missing
reference to the orientation of a simplex. In part (b) I have often seen notation like Z3/Z. Note,
that this does not make sense, since Z is not a subgroup of Z3 (although there are many subgroups
of Z3 being isomorphic to Z but the quotient will depend on the choice of such a subgroup).

A4.

(a) Let ∆̄6 be be the simplicial complex consisting of all of the faces of the standard 6-simplex in
R7 (including the 6-simplex itself). Consider the simplicial complex K obtained from starring
in the barycentre of ∆6. Write down the simplicial homology groups of K. Justify your answer.

(b) Let L be the 3-skeleton of K. Calculate the Euler characteristic of L and find its simplicial
homology groups

[10 marks]

Solution

(a) The underlying space of K is the 6-simplex ∆6 which is a convex subset of R7 and so is
contractible. Hence it has the same homology groups as a point: H0(K) ∼= Z and all other
homology groups are trivial.

Hi(K) =

{
Z for i = 0,

0 else.

[3 marks, standard example]

(b) We have n0 = 7 + 1, n1 =
(

7
2

)
+
(

7
1

)
, n2 =

(
7
3

)
+
(

7
2

)
, n3 =

(
7
4

)
+
(

7
3

)
. By taking the alternating

sum we obtain 1−
(

7
4

)
= −34. [2 marks, similar to question set]

Now L is 3-dimensional and so and so has trivial homology groups in dimensions above 3. For
0 6 i 6 3 we have Ci(K) = Ci(L) and the boundary homomorphisms are the same. Hence,
Hi(K) = Hi(L) for 0 6 i 6 2. Since C4(L) = 0 we have H3(L) = Z3(L) a free group of rank β3.
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Now, using the identity −34 = χ(L) =
∑

(−1)iβi we obtain 1 − β3 = −34(since β1 = β2 = 0)
and so β3 = 35 and H3(L) = Z35.

Hi(L) =


Z for i = 0,

Z35 for i = 3,

0 else.

[5 marks, similar to question set]

[Total: 10 marks]

Feedback: Most people used the correct approach to solve the problem. A very common mistake
was to assume that the 3-skeleton of the starred simplex is homeomorphic to the 3-skeleton of the
simplex, which is wrong (what is true is that a starring of the 3-skeleton of ∆6 is homeomorphic to
the 3-skeleton of ∆6)
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SECTION B B

Answer THREE of the FOUR questions.

B5. Let ei be the ith standard basis vector in R8 , 1 6 i 6 8. Consider the set K of sixteen triangles
with vertices ei , ej and ek where ijk runs over the following triples:

126, 236, 138, 148, 348, 146, 365, 345, 467, 675, 472, 751, 452, 152, 237, 137.

(a) Verify that K is a simplicial surface.
[For the link condition, you need only check the vertices e1 and e8 to illustrate the method.]

(b) Represent the underlying space of K as a polygon with edges identified in pairs, and hence
represent |K| by a symbol.

(c) Reduce the symbol to canonical form and hence determine the genus and orientability type of
the surface |K|.

[15 marks]

Solution

(a) The intersection condition is satisfied automatically since the vertices are linearly independent.

[1 mark]

The connectivity condition is satisfied because (for example) the following edges link all of the
vertices: e8 − e1 − e2 − e3 − e4 − e5 − e6 − e7. [1 mark]

The link of e1 consists of the edges e7−e3−e8−e4−e6−e2−e5−e7, which form a closed simple
polygon. The same holds for the link of e8, which is formed by the edges e1 − e3 − e4 − e1.

[3 marks]

(b) A corresponding polygon with edges identified in pairs might look as follows.

e1 e8 e1 e2 e7

e3 e4 e6 e3 e4

e7 e7 e5 e4

e3 e1 e2 e7

a a b c

d

e

f

f g

cbh

d

i
i

g

e

h

The corresponding symbol is given by

aa−1bcdeff−1gc−1b−1hd−1ii−1g−1e−1h−1.

[5 marks]
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(c) Reducing the symbol to canonical form using the standard alorithm gives

aa−1bcdeff−1gc−1b−1hd−1ii−1g−1e−1h−1

∼ b(ċdegċ−1)b−1hd−1g−1e−1h−1 (cancelling xx−1)

∼ bb−1cdegc−1hd−1g−1e−1h−1 (commuting of cUc−1)

∼ cdeġ(c−1)(hd−1)ġ−1e−1h−1 (cancelling xx−1)

∼ ċ(deg)(hd−1)ċ−1g−1e−1h−1 (gUV g−1... ∼ gV Ug−1...)

∼ chd−1de(ġc−1ġ−1)e−1h−1 (cUV c−1... ∼ cV Uc−1...)

∼ cgc−1g−1hd−1dee−1h−1 (commuting of cUc−1)

∼ cgc−1g−1 (cancelling xx−1)

Hence, the surface is orientable of genus 1 (the torus). [5 marks]

[Total: 15 marks, similar to question set]

Feedback: Most people have chosen this question and most did very well.

B6. Consider the triangulation K of the dunce hat given by the following picture:

8

6 7

4

5

1 2 3 1

2

3

2

3

1

(a) Show that the simplicial homology groups of the dunce hat are given by

Hi(K) =

{
Z for i = 0

0 otherwise.

You may use the fact, that every 1-cycle is homologous to one involving only edges on the
boundary of the template and e.g. the following “internal” edges: 〈3, 4〉, 〈3, 5〉, 〈2, 6〉, 〈2, 7〉
and 〈1, 8〉.

(b) Use the classification theorem to show that the dunce hat is not a closed surface.

[15 marks]

7 of 16 P.T.O.



MATH3/4/61072

Solution

(a) To find Z1(K) first note, that for every 1-cycle x one has x ∼ x′ for some x′ only involving edges
corresponding to edges on the boundary of the template and e.g. the following “internal” edges
〈3, 4〉, 〈3, 5〉, 〈2, 6〉, 〈2, 7〉 and 〈1, 8〉. Since all other edges can be eliminated via boundaries of
triangles. However, since x ∈ Z1(K) we also have x′ ∈ Z1(K) and so x′ can not involve these
internal edges, since their “internal” vertices wouldn’t cancel out when taking the boundary.

Consider a cycle
x′ = λ1〈1, 3〉+ λ2〈3, 2〉+ λ3〈2, 1〉.

Now, d(x′) = 0 implies λ1 = λ2 = λ3. Hence, the subgroup V of cycles involving only edges on
the boundary of the template are generated by

x = 〈1, 3〉+ 〈3, 2〉+ 〈2, 1〉.

We have Z1(K) = V +B1(K). It remains to determine V ∩B1(K). Consider, some non-trivial
cycle Z2(K). For the inner edges of the template to cancel out when taking the boundary the
cycle has to be a multiple of the sum over all triangles (with compatible orientation, e.g. all
clockwise orientented), which we denote by y. But then

d(`y) = `〈1, 3〉+ 〈3, 2〉+ 〈2, 1〉 = `x.

Hence, V = Z1(K) = B1(K) and H1(K) = Z1(K)/B1(K) = 0.

For z ∈ Z2(V ) it must be a multiple of y, but since d(y) 6= 0 we have H2(K) = Z2(K) = 0.

[12 marks, similar to question set]

(b) For the Euler characteristic of the dunce hat we obtain

χ = β0 − β1 + β2 = 1− 0 + 0 = 1.

From the classification theorem we see that the only possible closed surface is the projective
plane. On the other hand, we have H1(P2) = Z/2Z 6= 0 = H1(K).

Alternatively, one can argue, that around a point on the identified edges the dunce hat is not
locally Euclidean. But, it’s harder to actually prove this. [3 marks, new]

[Total: 15 marks]

Feedback: Most people who attempted the question used the correct approach. However, often
the given arguments in (a) where not clear (or even wrong), so most people secured partial marks,
here. For part (b) one had to be careful with choosing an argument. The Dunce hat is given by
identifying edges of a topological polytope, but this time not in pairs. However, we didn’t learn
about a theorem telling us that in this case we don’t obtain a surface. Equivalently we didn’t learn
a theorem telling us that a symbol where the letters do not occur in pairs cannot produce a surface.

B7.

(a) Define the rth Betti number βr of a simplicial complex K
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(b) Define the Euler characteristic χ(K) of a simplicial complex K.

(c) State and prove the relationship between the Betti numbers and the Euler characteristic of K.

(d) Give an application of this relationship.

[15 marks]

Solution

(a) The rth Betti number. βr(K) of a simplicial complex K is the rank of Hr(K)

[2 marks, bookwork]

(b) The Euler characteristic of an n-dimensional simplicial complexK is given by χ(K) =
∑n

r=0(−1)rnr
where nr is the number of r-simplices.

[2 marks, bookwork]

(c) The relation Hr(K) = Zr(K)/Br(K) implies

βr(K) = rank(Hr(K)) = rank(Zr(K))− rank(Br(K)).

On the other hand one has [2 marks, bookwork]

Br−1(K) = Im(dr : Cr(K)→ Cr−1(K))

and
Zr(K) = Ker(dr : Cr(K)→ Cr−1(K)).

By isomorphism theorem we obtain Cr(K)/Zr(K) ∼= Br−1(K). This implies rank(Br−1(K)) =
rank(Cr(K))− rank(Zr(K)) or equivalently

nr = rank(Cr(K)) = rank(Br−1(K)) + rank(Zr(K)).

[3 marks, bookwork]

Now, we may conclude

χ(K) =
n∑
r=0

(−1)rnr by definition

=
n∑
r=0

(−1)r
(
rankZr(K) + rankBr−1(K)

)
=

n∑
r=0

(−1)rrankZr(K) +
n∑
r=0

(−1)rrankBr−1(K)

=
n∑
r=0

(−1)rrankZr(K)−
n∑
r=0

(−1)rrankBr(K) since Br(K) = 0 for r = −1, n

=
n∑
r=0

(−1)r
(
rankZr(K)− rankBr(K)

)
=

n∑
r=0

(−1)rβr(K).

[5 marks, bookwork]
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(d) The most important consequence is the homotopy invariance of the Euler characteristic. An-
other possibility would be the calculation of the homology groups of the n-sphere or even the
calculation in A4(b). [1 marks, bookwork]

[Total: 15 marks]

Feedback: Part (a) and (b) didn’t cause any trouble. In part (c) one serious mistake was the
conclusion that

∑
r(−1)rnr =

∑
r(−1)rβr should imply nr = βr which is wrong.

B8.

(a) Let K and L be simplicial complexes. Define what is meant by a simplicial map |K| → |L|
(with respect to K and L). Define what is meant by a simplicial approximation to a continuous
map f : |K| → |L| (with respect to K and L).

Prove that a vertex map s with f(star(v)) ⊂ star(s(v)) for all vertices v of K induces a simplicial
approximation to f .

(b) Consider the simplicial complex L with vertices v1, v2, v3, v4, v5, which is drawn below, and an
injective continuous map f : [0, 1]→ |L| with

f(0) ∈ 〈v1, v4〉, f(1/5) ∈ 〈v1, v5〉, f(1/2) ∈ 〈v2, v5〉, f(4/5) ∈ 〈v2, v4〉, f(1) ∈ 〈v2, v3, v4〉

and having the image indicated in the picture. Let K be the simplicial complex consisting just
of the simplex 〈0, 1〉 and its faces. Give a simplicial approximation to f on a sufficiently fine
barycentric subdivision K(m) of K.

v1
v5

v2

v3

v4

f(0)

f(1/5)

f(1/2)

f(4/5)
f(1)

[15 marks]
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Solution

(a) A map of simplicial complexes s : K → L is induced by a map of the vertex sets s0 : V (K)→
V (L) so that if {v0, v1, ..., vr} is an r-simplex of K then {s0(v0), s0(v1), ..., s0(vr)} is a simplex
in L (possibly of lower dimension since s0 need not be an injection on the vertices of the
simplex. Such a map of the vertices may be extended by linearity over the simplices and gives
a continuous function |s| : |K| → |L| by the Gluing Lemma. A function between the underlying
spaces which arises in this way is called a simplicial map.

[3 marks, bookwork]

We say that a simplicial map |s| : |K| → |L| is a simplicial approximation to a continuous map
f : |K| → |L| if, for each point x ∈ |K|, the point |s|(x) belongs to the carrier of f(x) i.e.
simplex of L whose interior contains f(x).

[2 marks, bookwork]

Given a point x in the interior of 〈v0, . . . , vr〉 it is contained in
⋂r
i=0 star(vi) and, hence,

f(x) ∈ f

(
r⋂
i=0

star(vi)

)
⊂

r⋂
i=0

(star(s(vi))

In particular,
⋂r
i=0(star(s(vi)) is non-empty. If the interior of σ is contained in

⋂r
i=0(star(s(vi))

then s(v0), . . . , s(vr) have to be vertices of σ. On the one hand this implies that 〈s(v0), . . . , s(vr)〉
is a face of σ. In particular, it is a simplex in L. Hence, s is admissible. On the other hand
the carrier of every point in

⋂r
i=0(star(s(vi)) contains 〈s(v0), . . . , s(vr)〉 and hence |s|(x).

[3 marks, question set]

(b) We have to take K(2) consisting of the intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1] and their
endpoints. Now, one observes that

star(0) = [0, 1/4) ⊂ [0, 1/2) = f−1(star(v1)),

star(1/4) = (0, 1/2) ⊂ (0, 4/5) = f−1(star(v5)),

star(1/2) = (1/4, 3/4) ⊂ (0, 4/5) = f−1(star(v5)),

star(3/4) = (1/2, 1) ⊂ [1/5, 1] = f−1(star(v2)),

star(1) = (3/4, 1] ⊂ [1/5, 1] = f−1(star(v2)).

Hence, by (a) the vertex map s given by s(0) = v1, s(1/4) = s(1/2) = v5 and s(3/4) = s(1) = v2

defines a simplicial approximation to f . [7 marks, similar to question set]

[Total: 15 marks]

Feedback: Only a few people attempted the question.
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SECTION C C

Answer ALL THREE questions.

C9.

(a) Let p be an odd prime. What is a p-symmetry of a topological surface? What is a fixed point
of such a symmetry?

(b) Given a closed surface X with a p-symmetry f with n fixed points, outline a proof for the
identity

χ(S) = p · χ(S/∼)− n(p− 1).

Here, S/∼ is assumed to be a closed surface obtained as a quotient via the equivalence relation
∼ defined by f i(x) ∼ x for i = 1, . . . , p.

(c) Use (b) to determine which closed surfaces S admit a p-symmetry with a finite number of fixed
points, such that S is homeomorphic to the quotient S/∼.

[17 marks]

Solution

(a) A p-symmetry of a topological surface S is a homeomorphism f : S → S, such that its p-fold
iterate fp = f ◦ · · · ◦ f = idS : S → S, the identity map but f 6= idS. A fixed point of a
p-symmetry f is a point x ∈ S, such that f(x) = x. [4 marks, bookwork]

(b) By the formulation of the question S ′ is assumed to be a topological surface (indeed, this is
always the case) and, hence, admits a triangulation K ′. One can choose the triangulation
(e.g. by starring if necessary) such that the images of fixed points become vertices and no
two such vertices belong to the same edge. Now, one uses the quotient map q to construct
a triangulation K for S, such that the map |K| → |K ′| corresponding to q maps vertices to
vertices and triangles to triangles. Then we obtain e(K ′) = e(K) and f(K) = f(K ′), but for
the numbers of vertices we have v(K)− n = p · (v(K ′)− n), since the fixed points have only a
single preimage under the map q, but all other points have exactly p points in the preimage.
Alltogether one obtains

χ(S) = v(K)− e(K) + f(K) = p(v(K ′)− n) + n− p · e(K ′) + p · f(K ′) = p · χ(S ′)− pn+ n.

[7 marks, similar to question set]

(c) Assuming S ∼= S/∼ implies χ(S) = χ(S/∼). Assume that f has n fixed points. Then by (b)
one obtains

p · χ(S ′)− n(p− 1) = χ(S) = χ(S ′).

Hence, χ(S ′)(p − 1) = n(p − 1) and χ(S ′) = n > 0. Hence, by Classification Theorem the
only possible surfaces are the sphere, the projective plane, the torus and the Klein bottle, for
n being 2, 1 and 0, respectively.

Note, on the other hand, that we have seen that for p an odd prime there exist p-symmetries
of S2 with two fixed points, of P1 with one fixed point. For the torus we have the rotation by
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2π/p in one of the factors as a free p-symmetry giving again the torus as a quotient. For the
Klein Bottle one should refer to the p-symmetry constructed in the problems, which, as it was
shown, gives the Klein bottle again as the quotient. [6 mark, new]

[Total: 17 marks]

Feedback: In (b) many noticed the similarity to one of the example questions and did well with
generalising the argument. It was more difficult then expected to see that χ(S) = χ(S/∼) is the
starting point for solving the problem.

C10.

(a) Show that if a graph G with v vertices and e edges embeds in a surface of Euler characteristic
χ then χ 6 v − e/3.

(b) Show that in the situation above for a complete graph G the inequality v2− 7v+ 6χ 6 0 holds.

(c) Prove that if a complete graph with v vertices embeds into a surface of Euler characteristic
χ = 7v−v2

6
then this embedding is 2-cell and every region is bounded by exactly three edges.

(d) Show that the projective plane has a unique minimal triangulation.

[17 marks]

Solution

(a) Given an embedding of a graph G with v vertices and e edges in a closed surface S with r
regions 2e > 3r holds. Hence, from the inequality χ(S) 6 v − e+ r 6 v − e+ 2e/3 = v − e/3.

[2 marks, question set]

(b) The complete graph on v vertices has v(v−1)
2

edges. By (a) we have

χ 6 v − e/3 = v − v(v − 1)

6
=

7v − v2

6
.

Which implies v2 − 7v + 6χ 6 0. [3 marks, question set]

(c) From the above proof of (b) one sees that χ = 7v−v2
6

holds if and only if χ = v− e/3. Now, the
proof of (a) shows that we must have

(i) χ = v − e+ r, which is the case if and only if the embedding is 2-cell, and

(ii) 3r = 2e which implies that every region is bounded by exactly three edges.

[3 marks, question set]
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(d) Assume we have a triangulation of P2 such that the 1-skeleton is a complete graph on six
vertices. Then this triangulation would be minimal. Indeed, by a theorem from the notes every
triangulation fulfils v > (7 +

√
49− 24χ)/2. Here, we have 6 = (7 +

√
49− 24)/2. Hence, it

is clearly minimal in terms of vertices. On the other hand, for every triangulation we have
3f = 2e. It follows that χ = v − f/2 and hence f = 2(v − χ). Therefore, the triangulation is
minimal also with respect to the number of triangles. On the other hand given another minimal
triangulation we also must have v = 6 and 1 = χ = 6 − e/3. Hence, e = 15 = 6(6 − 1)/2 and
the 1-skeleton is the complete graph. [3 marks, question set]

Assume we have a triangulation of P2 such that the 1-skeleton is a complete graph on six
vertices and the vertices are labelled v1, . . . , v6. Now, the link of the vertex v6 has to contain all
the other vertices. Up to relabelling we may assume that the vertices occur in the cyclic order
v1, . . . , v5 in the link. We obtain the following triangles as a subset of the simplicial surface.

v1 v2

v3

v6

v5 v4

Now, consider the link of v5. We see that v1, v6, v4 have to occur consecutively in this order.
The question is in which order v2 and v3 follow in the link. But v3 cannot follow after v4, since
then the link of v4 would consist only of v3, v5, v6, which is a contradiction to the fact that the
1-skeleton is a complete graph. Hence, the link of v5 has to be v1, v6, v4, v2, v3. We arrive at
the following picture.

v1 v2

v3v3

v2

v6

v5 v4

Now, consider the link of v4. We have already v2, v5, v6, v3 occurring consecutively in this order.
Hence, v1 has to occur between v3 and v2 and we arrive at

v1 v2

v3v3

v1v2

v6

v5 v4
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This gives indeed a triangulation. To see this it remains to check the link condition for v1, v2

and v3. Since in the construction we had no choices this gives the unique triangulation having
K6 as its 1-skeleton. [6 marks, question set]

[Total: 17 marks]

Feedback: Although the problems where all contained on the exercise sheets this question caused
the most problems. In particular, (d) was attempted only be a few people. The most common
mistake in (d) was to conclude the uniqueness from the fact that the numbers f , e and v are
uniquely determined, but in general there might be different triangulations with the same number of
vertices/edges and triangles.

C11.

(a) Define what is meant by saying that (X,A) is a triangulable pair of spaces.

(b) State the axioms for the reduced homology groups of triangulable spaces.

(c) Prove that if there is a short exact sequence of abelian groups

0→ H
i→ G

q→ Z→ 0

then G ∼= H × Z.

(d) Determine the reduced homology groups of the disjoint union of a triangulable space X and a
single point in terms of the groups H̃i(X), i > 0.

[16 marks]

Solution

(a) A triangulable pair of spaces (X,A) is a topological space X with a subspace A such that
there is a homeomorphism h : X → |K|, the underlying space of a simplicial complex K, with
h(A) = |L| the underlying space of a subcomplex L of K. [2 mark, bookwork]

(b) A reduced homology theory assigns to each non-empty triangulable space X a sequence of
abelian groups H̃n(X) for n ∈ Z and for each continuous map of triangulable spaces f : X → Y
a sequence of homomorphisms f∗ : H̃n(X)→ H̃n(Y ) such that the following axioms hold.

(i) [Functorial Axiom 1] Given continuous functions f : X → Y and g : Y → Z, it follows
that

g∗ ◦ f∗ = (g ◦ f)∗ : H̃n(X)→ H̃n(Z) for all i.

(ii) [Functorial Axiom 2] For the identity map idX : X → X,

(idX)∗ = idHn(X) : H̃n(X)→ H̃n(X) (the identity homomorphism) for all n.

(iii) [Homotopy Axiom] For homotopic maps f ' g : X → Y ,

f∗ = g∗ : H̃n(X)→ H̃n(Y ) for all n.
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(iv) [Exactness Axiom] For any triangulable pair (X,A) there are boundary homomorphisms
∂ : H̃n(X/A)→ H̃n−1(A) for all n which fit into a long exact sequence as follows.

. . .→ H̃n(A)
i∗→ H̃n(X)

q∗→ H̃n(X/A)
∂→ H̃n−1(A)

i∗→ H̃n−1(X)→ . . .

Furthermore, given any continuous function of triangulable pairs f : (X,A)→ (Y,B) (i.e.
f : X → Y such that f(A) ⊂ B) this induces a continuous function of quotient spaces
f̄ : X/A→ Y/B. Then the following diagram commutes for all n.

H̃n(X/A)
∂ //

f̄∗
��

H̃n−1(A)

f∗
��

H̃n(Y/B)
∂ // H̃n−1(B)

(v) [Dimension Axiom] H̃0(S0) ∼= Z and H̃n(S0) = 0 for all n 6= 0.

[7 marks, bookwork]

(c) Since q is surjective, we may choose an element g1 ∈ G such that q(g1) = 1. Then we may define
a homomorphism f : H × Z → G by f(h, n) = i(h) + ng1. This is clearly a homomorphism
since i is a homomorphism. To see that f is surjective suppose that g ∈ G and q(g) = n ∈ Z.
Then q(g − ng1) = q(g)− nq(g1) = n− n = 0 so that g − ng1 ∈ Ker(q) = Im(i) (by exactness)
and so g − ng1 = i(h) for some h ∈ H so that g = i(h) + ng1 = f(h, n) as required. To see
that f is injective suppose that f(h, n) = i(h) + ng1 = 0. Then q(i(h) + ng1) = 0 gives n = 0.
Hence, i(h) = 0 so that h = 0 since i is injective. Hence, f is an isomorphism.

[2 marks, problem set]

(d) Consider the pair (X t ∗, X) for which (X t ∗)/X = ∗ t ∗ = S0. Then the exactness axiom
gives

. . .→ H̃n+1(S0)
∂→ H̃n(X)

i∗→ H̃n(X t ∗) q∗→ H̃n(S0)→ . . .

For n > 0 we have H̃n+1(S0) = H̃n(S0) = 0 by Dimension Axiom. Hence, H̃n(X) ∼= H̃n(X t∗).
For n = 0 one obtains

. . .→ 0
∂→ H̃0(X)

i∗→ H̃0(X t ∗) q∗→ Z→ 0

Hence, by (b) one obtains H̃0(X t ∗) = H̃0(X)× Z. [5 marks, similar to problem set]

[Total: 16 marks]

Feedback: When attempted parts (a) and (b) were done well. Part (c) was meant mainly to help
with (d). However, it caused some problems. There were only very few correct solutions for (d).
Most people didn’t recognise the necessity of using the exactness axiom. One mistake was to choose
the wrong subspace for the pair (the single point instead of X, which doesn’t help since Y/∗ is always
Y by definition).

END OF EXAMINATION PAPER
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