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1. (a) Let vi be the ith standard basis vector in R10 , 1 6 i 6 10. Consider the set K
of twenty triangles with vertices vi , vj and vk where (i, j, k) is one of

(1, 2, 7), (1, 2, 10), (1, 4, 7), (1, 4, 10), (2, 3, 5), (2, 3, 9), (2, 5, 10), (2, 7, 9), (3, 4, 5), (3, 4, 8),

(3, 6, 8), (3, 6, 9), (4, 5, 7), (4, 8, 10), (5, 6, 7), (5, 6, 10), (6, 7, 8), (6, 9, 10), (7, 8, 9), (8, 9, 10).

Verify that K is a simplicial surface.

(b) Find a symbol which represents the simplicial surface K and reduce this to canonical
form. Hence, identify the underlying space of K up to homeomorphism as a space
in the classification theorem for closed surfaces.

(c) Confirm your answer to (b) by calculating the Euler characteristic of K and deter-
mining whether it is orientable.

[15 marks]

2. A topological manifold with boundary of dimension d is defined a Hausdorff, second
countable topological space X, which is locally homeomorphic to H+ = Rd−1× [0,∞), i.e.
every x ∈ X admits an open neighbourhood which is homeomorphic to an open subset
of H+. The boundary of X denoted as ∂X is the set of points, where X is not locally
Euclidean (or equivalently the points in the image of the hyperplane H = Rd−1 × {0}
under the local homeomorphisms).

Note, that with this definition a manifold X is also a manifold with boundary, where
∂X = ∅.

(a) Consider the simplicial complexes below and check whether their underlying space
is a surface with boundary. In each case justify your answer.

(i) K1 consisting of the triangles 〈0, e1, e2〉 and 〈0,−e1, e2, 〉 and their faces, where
e1, e2 ∈ R2 are the standard basis vectors;

(ii) K2 consisting of the triangles 〈0, e1, e2〉 and 〈0,−e1,−e2〉 and their faces;

(iii) K ′ consisting of all but one of the triangles of a simplicial surfaces K and all
faces of these triangles.

(b) Give a suitable definition of a simplicial surface with boundary by relaxing the link
condition such that the corresponding underlying space is a path-connected compact
surfaces with boundary. Show you definition works in this way by adapting the proof
of Proposition 2.5.

[15 marks]
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