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SECTION A A

A1.

(a) Define what is meant by a topological manifold.

(b) Give an example to show that a quotient of a topological manifold by an equivalence relation
is not necessarily a topological manifold.

(c) State the classification theorem for compact path-connected topological surfaces.

[10 marks]

Solution

(a) Let n be a non-negative integer. An n-dimensional (topological) manifold is a topological space
X which

(i) is Hausdorff,

(ii) is second countable (i.e. has a countable basis), and

(iii) is locally Euclidean, i.e. each point x ∈ X lies in an open subset V in X which is homeo-
morphic to an open subset U ⊂ Rn (with the usual topology).

[5 marks, bookwork]

(b) One crucial property is the Hausdorff property. We need to find a manifold and an equivalence
relation, such that the resulting quotient is not Hausdorff. The space R × {0, 1}/∼, with
(x, 0) ∼ (x, 1) for x 6= 0, is not Hausdorff, but R× {0, 1} is a manifold.

Alternatively, we can find an example where the quotient is not longer locally Euclidean. For
example R × {0, 1}/∼, with ∼ induced by (0, 0) ∼ (0, 1). The resulting space (which can be
shown to be homeomorphic the union of the coordinate axes in R2) is not locally Euclidean
around the [(0, 1), (0, 0)]

[2 marks, bookwork]

(c) Every connected compact topological surface (or closed surface) is homeomorphic to one and
only one of:

(i) S2,

(ii) Tg for some g > 1 (where T1 = S1 × S1 and Tg+1 = Tg#T1 for g > 1),

(iii) Pg for some g > 1 (where P1 = P 2 and Pg+1 = Pg#P1 for g > 1). [3 marks, bookwork]

[Total: 10 marks]
Quite a few people had trouble to find an example for (b). Apart from this the question was in

general done well. Almost everyone remembered at least the names of the three crucial properties.
However, the explanation of “locally Euclidean” was not always correct. Note, that not every open
subset is homeomorphic to an open subset of Euclidean space (note, that this would imply that X
itself is homeomorphic to an subset of Euclidean space). The condition states only that there exist
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such an open neighbourhood U for every point x ∈ X. Some people also forgot to mention that U
has to cointain x (which could be done by calling U an open neigbourhood of x).

A2.

(a) Define what is meant by a geometric simplicial complex K.
[The notions of geometric simplex and face of a simplex may be used without definition.]

(b) What is the underlying space |K| of such a simplicial complex K?

(c) An abstract simplicial complex has vertices v1, v2, v3, v4, v5 and simplices {v2, v3, v5}, {v1, v2},
{v1, v3}, {v2, v4}, {v4, v5} and their faces. Draw a realisation K of this simplicial complex as a
geometric simplicial complex in R2.

(d) Define the Euler characteristic of a simplicial complex and calculate the Euler characteristic of
the simplicial complex in part (c).

(e) Draw the first barycentric subdivision K ′ of the geometric simplicial complex K in part (c).

(f) Let L be the simplicial complex that is obtained from K ′ by removing one triangle. Find the
Euler characteristic of L.

[10 marks]

Solution

(a) A (geometric) simplicial complex is a non-empty finite set K of simplices in some Euclidean
space Rn such that

(a) the face condition: if σ ∈ K and τ ≺ σ then τ ∈ K,

(b) the intersection condition: if σ1 and σ2 ∈ K then σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 ≺ σ1,
σ1 ∩ σ2 ≺ σ2.

[3 marks, bookwork]

(b) A realisation is given by the following picture

v1

v2

v3

v4

v5

[2 marks, similar to question set]
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(c) The Euler characteristic of a simplicial complex K is given by the alternating sum

χ(K) =
∞∑
r=0

(−1)rnr

where nr is the number of simplices of dimension r. In this case χ(K) = 5− 7 + 1 = −1.

[2 marks, bookwork]

(d) The barycentric subdivision is given by the following picture

v1

v2

v3

v4

v5

[2 marks, similar to question set]

(e) The Euler characteristic of K ′ is again −1, since barycentric subdivisions does not change the
Euler characteristic. Hence, χ(L) = χ(K)− 1 = −2. [1 mark, simple application]

[Total: 10 marks]

A3.

(a) Define what is meant by the r-chain group Cr(K), the r-cycle group Zr(K), and the r-boundary
group Br(K) of a simplicial complex K.

(b) Write down, without proof, generators for the groups Z1(K) and B1(K) of the simplicial
complex K in Question A2(c). Hence, find the first homology group H1(K).

[10 marks]

Solution

(a) For r ∈ Z. the r-chain group of K, denoted Cr(K), is the free abelian group generated by Kr,
the set of oriented r-simplices of K subject to the relation σ+ τ = 0 whenever σ and τ are the
same simplex with the opposite orientations. [2 marks, bookwork]

For each r ∈ Z we define the boundary homomorphism dr : Cr(K)→ Cr−1(K) on the generators

dr(〈v0, . . . , vr〉) =
r∑
i=0

(−1)i〈v0, . . . , vi−1, vi+1, . . . , vr〉

and then extend linearly. [2 marks, bookwork]

The kernel of the boundary homomorphism dr is called the r-cycle group and denoted by
Zr(K), i.e. Zr(K) = {c ∈ Cr(K) | dr(c) = 0}. [1 mark, bookwork]

The image of the boundary homomorphism dr+1 is called the r-boundary group and is denoted
by Br(K), i.e. Br(K) = {dr+1(c) | c ∈ Cr+1(K)}. [1 mark, bookwork]
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(b) Z1(K) ∼= Z3 is generated by

z1 = 〈v1, v3〉+ 〈v3, v2〉+ 〈v2, v1〉
z2 = 〈v3, v5〉+ 〈v5, v2〉+ 〈v2, v3〉
z3 = 〈v5, v4〉+ 〈v4, v2〉+ 〈v2, v5〉

B1(K) ∼= Z is generated by z2. [2 marks, similar to question set]

We obtain
H1(K) = Z1(K)/B1(K) = (Zz1 ⊕ Zz2 ⊕ Zz3)/Zz2 ∼= Z2.

[2 marks, similar to question set]

[Total: 10 marks]
In general the question was done well. Some of you could have saved some time for counting

simplices by referring to the fact, that barycentric subdivision does not change the Euler characteristic.
Also note, that the formulation of the question asks you to remove a triangle from K not from the
underlying space of K. This implies all the faces of this triangle are still present in L.

A4.

(a) Consider the simplicial complex K consisting of the two 4-simplices 〈0, e1, e2, e3, e4〉 ∈ R4 and
〈e1 + e2 + e3 + e4, e1, e2, e3, e4〉 ∈ R4 (which intersect in a 3-simplex as a common face) and all
their faces. Give an argument why the homology groups of K are given by

Hi(K) =

{
Z i = 0

0 else.

(b) Let L be the 3-skeleton of K. Calculate the Euler characteristic of L and find its homology
groups.

[10 marks]

Solution

(a) The underlying space is contractible. Indeed, H(t, x) := e1 + t · (x − e1) gives a homotopy
between the identity and the constant map. Because of the homotopy invariance of homology
the homology groups are the same as for a point. [3 marks, similar to question set]

(b) For the Euler characteristic of |K| we have χ(|K|) = χ(∗) = 1, since the Euler characteristic
depends only on the ranks of the homology groups. On the other hand we have

χ(L) =
3∑
k

(−1)rnr = χ(K)− n4 = χ(K)− 2 = −1,

since we have exactly two 4-dimensional simplices in K. [2 marks, similar to question set]
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Now L is 3-dimensional and so and so has trivial homology groups in dimensions above 3. For
0 6 i 6 3 we have Ci(K) = Ci(L) and the boundary homomorphisms are the same. Hence,
Hi(K) = Hi(L) for 0 6 i 6 2. Since C4(L) = 0 we have H3(L) = Z3(L) a free group of rank
β3. Now, using the identity −1 = χ(L) =

∑
(−1)iβi we obtain 1− β3 = −1(since β1 = β2 = 0)

and so β3 = 2 and H3(L) = Z2. [5 marks, similar to question set]

[Total: 10 marks]
Most people realised, that the underlying space is contractible. However, I wanted also to see an

argument why this is true. The easiest way to calculate the Euler characteristic was to use (a) and
the Euler-Poincaré formula. However, doing the actual counting of simplices was equally good, but
of course more time consuming. For getting full marks it was important to argue why H3(L) is a free
(abelian) group and therefore H3(L) ∼= Zβ3.
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SECTION B B

B5.

(a) Explain how a surface symbol may be used to represent a closed surface arising from the
identification in pairs of the edges of a polygon.

(b) State the classification theorem for surface symbols.

(c) The boundaries of three discs are identified as shown below.

a

b

c

d

e

f

i

e

a

b

g

h

g

h

f

i

c

d

Find a symbol for the resulting closed surface. By reducing the symbol to canonical form, or
otherwise, identify the surface up to homeomorphism.

[15 marks]

Solution

(a) To write down a symbol respresenting a topological polygon with edges identified in pairs a
letter is assigned to each edge of the polygon, assigning the same letter to two edges if and only
if they are identified. starting at any vertex, write down the letters in sequence going either
clockwise or counterclockwise around the boundary, assigning the exponent −1 at the second
appearance if the identification reverses the order of points one the corresponding pair of edges.
[4 marks, bookwork]

(b) The classification theorem states that every closed surface is representatable by one and only
one of the following symbols:

(i) xx−1,

(ii) x1y1x
−1
1 y−11 . . . xgygx

−1
g y−1g ,

(iii) x1x1 . . . xgxg.

[2 marks, bookwork]

(c) We can produce a single polygon with edges to be identified in pairs by using three edge
identifications to join up the polygons as follows.
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a

b

c

d

e
a

b

g

h

g

h

f

i

c

d

This may be represented by the symbol abcda−1b−1ghc−1d−1g−1h−1.

[3 marks, similar to question set]

Now reducing the symbol for the polygon identifications to standard form gives the following.

abcd(a−1)(b−1ghc−1)d−1g−1h−1 ∼ a(bcd)(b−1ghc−1)a−1d−1g−1h−1

∼ ab−1ghc−1bc(da−1d−1)g−1h−1

∼ (ada−1d−1)b−1gh(c−1bc)g−1h−1

∼ (ada−1d−1)(b−1c−1bc)(ghg−1h−1)

∼ (x1y1x
−1
1 y−11 )(x2y2x

−1
2 y−12 )(x3y3x

−1
3 y−13 ).

[5 marks, similar to question set]

Hence the surface is orientable of genus 3.

[1 marks, similar to question set]

[Total: 15 marks]
All students attempted this question and most did well up to the reduction of the symbol to normal

form. Here, some people relied on ad-hoc techniques instead of using the algorithm from the lecture.
Usually this took much more than five steps and often lead to confusion.

B6.

(a) Outline the definition of the connected sum S1#S2 of two connected surfaces S1 and S2.

(b) Define the orientability type of a compact path-connected surface.
[You may assume that every such surface admits a triangulation]

(c) Show that S1#S2 is orientable if S1 and S2 are.

(d) Show H2(S) 6= 0 if S is orientable.

[15 marks]
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Solution

(a) Suppose that S1 and S2 are non-empty path-connected topological surfaces. Choose subspaces
V1 ⊂ S1 and V2 ⊂ S2 which are homeomorphic to the open disc B1(0) ⊂ R2 by homeomorphisms

φi : B1(0)→ Vi for i = 1 and i = 2

We obtain the connected sum by removing the interiors of smaller discs, i.e. φi
(
B2

1/2(0)
)

and
glue along the boundary circles. More precisely, we define the quotient space of the disjoint
union

S =
[(
S1 − φ1

(
B2

1/2(0)
))
t
(
S2 − φ2

(
B2

1/2(0)
))]/

∼

where φ1(u) ∼ φ2(u) for u ∈ B2
1(0) with |u| = 1/2.

[4 marks, bookwork]

(b) An orientation for the the triangle is given by a cyclic ordering of the vertices. An orientation
of an edge is a ordering of the vertices. Two triangles with a common edge are coherently
oriented if the orientations induced on the common edge are opposite. An orientation of a
simplicial surface is a choice of orientation for each triangle so that each pair of triangles with
a common edge are coherently oriented. If such an orientation exists for some triangulation of
a surface S, then S is called orientable. [4 marks, bookwork]

(c) Suppose that S1 and S2 are orientable and |K1| ∼= S1 and |K2| ∼= S2. Then we may obtain K
such that |K| ∼= S1#S2 by removing a triangle 〈v1, v2, v3〉 from K1 and a triangle 〈v′1, v′2, v′3〉
from K2 and identifying the vertices vi ∼ v′i and the edges between them. Chose an orientation
for K1 choosing the oriented triangle 〈v1, v2, v3〉 and extending over K1 by coherence. Similarly
for K2 starting with the oriented triangle 〈v′3, v′2, v′1〉. The resulting orientation of the triangles
of K is coherent. [4 marks, bookwork]

(d) Suppose that K is orientable. Then we may choose an orientations for all the triangles which
are coherent across all the edges. Put z = the sum of these oriented triangles. Then, coherence
means that d2(z) = 0 and so z ∈ Z2(K) = H2(K) and so H2(K) 6= 0. [3 marks, question set]

[Total: 15 marks]
Everyone who attempted the question had the correct idea how the connected sum is constructed.

However, sometimes the description was lacking exactness and details. The same holds for the defini-
tion of the orientability type. In (b) most people scored at least partial marks. A common shortcoming
was that people didn’t mention that one has to make a compatible choice of the orientations for K1

and K2, respectively, in order to obtain an orientation for K. In (c) some people tried to prove the
opposite direction of the implication, which is actually harder to show.

B7.

(a) Let K and L be simplicial complexes. Define what is meant by a simplicial map |K| → |L|
(with respect to K and L). Define what is meant by a simplicial approximation to a continuous
map f : |K| → |L| (with respect to K and L).

Prove that a vertex map s with f(star(v)) ⊂ star(s(v)) for all vertices v ofK induces a simplicial
approximation to f .
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(b) Consider the simplicial complex L with vertices v1, v2, v3, v4, v5, which is drawn below, and an
injective continuous map f : [0, 1]→ |L| with

f(0) ∈ 〈v1, v4〉, f(1/5) ∈ 〈v1, v5〉, f(1/2) ∈ 〈v2, v5〉, f(4/5) ∈ 〈v2, v4〉, f(1) ∈ 〈v2, v3, v4〉

and having the image indicated in the picture. Let K be the simplicial complex consisting just
of the simplex 〈0, 1〉 and its faces. Give a simplicial approximation to f on a sufficiently fine
barycentric subdivision K(m) of K.

v1
v5

v2

v3

v4

f(0)

f(1/5)

f(1/2)

f(4/5)

f(1)

[15 marks]

Solution

(a) A map of simplicial complexes s : K → L is induced by a map of the vertex sets s0 : V (K)→
V (L) so that if {v0, v1, ..., vr} is an r-simplex of K then {s0(v0), s0(v1), ..., s0(vr)} is a simplex
in L (possibly of lower dimension since s0 need not be an injection on the vertices of the
simplex. Such a map of the vertices may be extended by linearity over the simplices and gives
a continuous function |s| : |K| → |L| by the Gluing Lemma. A function between the underlying
spaces which arises in this way is called a simplicial map.

[3 marks, bookwork]

We say that a simplicial map |s| : |K| → |L| is a simplicial approximation to a continuous map
f : |K| → |L| if, for each point x ∈ |K|, the point |s|(x) belongs to the carrier of f(x) i.e.
simplex of L whose interior contains f(x).

[2 marks, bookwork]

Given a point x in the interior of 〈v0, . . . , vr〉 it is contained in
⋂r
i=0 star(vi) and, hence,

f(x) ∈ f

(
r⋂
i=0

star(vi)

)
⊂

r⋂
i=0

(star(s(vi))
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In particular,
⋂r
i=0(star(s(vi)) is non-empty. If the interior of σ is contained in

⋂r
i=0(star(s(vi))

then s(v0), . . . , s(vr) have to be vertices of σ. On the one hand this implies that 〈s(v0), . . . , s(vr)〉
is a face of σ. In particular, it is a simplex in L. Hence, s is admissible. On the other hand
the carrier of every point in

⋂r
i=0(star(s(vi)) contains 〈s(v0), . . . , s(vr)〉 and hence |s|(x).

[3 marks, question set]

(b) We have to take K(2) consisting of the intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1] and their
endpoints. Now, one observes that

star(0) = [0, 1/4) ⊂ [0, 1/2) = f−1(star(v1)),

star(1/4) = (0, 1/2) ⊂ (0, 4/5) = f−1(star(v5)),

star(1/2) = (1/4, 3/4) ⊂ (0, 4/5) = f−1(star(v5)),

star(3/4) = (1/2, 1) ⊂ [1/5, 1] = f−1(star(v2)),

star(1) = (3/4, 1] ⊂ [1/5, 1] = f−1(star(v2)).

Hence, by (a) the vertex map s given by s(0) = v1, s(1/4) = s(1/2) = v5 and s(3/4) = s(1) = v2
defines a simplicial approximation to f . [7 marks, similar to question set]

[Total: 15 marks]
Problems occured already in the definition of simplicial maps and simplicial approximations. A

very common mistake was to demand that 〈v0, . . . , vr〉 is a simplex if and only if 〈φ(v0), . . . , φ(vr)〉
is a simplex. But only the implication “⇒” is part of the definition. Indeed, note, that the constant
map φw : V (K)→ V (L), v 7→ w is an admissable vertex map, but does usually not fulfil the stronger
condition above. For (b) you had to give some justification why your choice defines a simplicial
approximation. Just checking the carrier condition for the vertices is not sufficient. You have to
check it for every point of the underlying space |K(2)|! It’s much easier to use the condition in (a).

B8.

(a) Let φ be a simplicial map from |K| to |L|. Show how this defines a homomorphisms

φ∗ : Hr(K)→ Hr(L).

(b) Given two simplicial maps φ and ψ from |K| to |L|. Define what is meant by a chain homotopy
between φ and ψ.

(c) Show that the existence of a chain homotopy implies the equality φ∗ = ψ∗ : Hr(K) → Hr(L)
for the induced homomorphism on the level of homology.

(d) Consider the simplicial complexes K

v1 v2 v3 v4

and L
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w0

w1

w2 w3

w4

w5w6

Given the simplicial maps φ and ψ from |K| to |L| defined by

φ(v1) = w1, φ(v2) = w2, φ(v3) = w3, φ(v4) = w4

and
ψ(v1) = w1, ψ(v2) = w6, ψ(v3) = w5, ψ(v4) = w4.

Explain why a chain homotopy exists between φ and ψ, and describe such a chain homotopy
explicitely.

[15 marks]

Solution

(a) One defines φr : Cr(K) → Cr(L) as follows φr(〈v0, . . . , vr〉) = 〈φ(v0), . . . φ(vr)〉 if the result is
an r-simplex and 0 else. [1 mark, bookwork]

To see that this induces a homomorphism Hr(K)→ Hr(L) one needs to check, that cycles are
send to cycles and boundaries are send to boundaries. This follows directly from the fact that
dr ◦ φr = φr−1 ◦ dr. Indeed,

φr−1(dr(〈v0, . . . vr〉) =
∑
i

(−1)iφr−1(〈v0, . . . , v̂i, . . . , vr〉)

=
∑
i

(−1)i〈φ(v0), . . . , φ̂(vi), . . . , φ(vr)〉

= dr(φr(〈v0, . . . vr〉))

obviously holds whenever φr(〈v0, . . . vr〉) 6= 0. However, if we have φr(〈v0, . . . vr〉) = 0, then

#{φ(v0), . . . , φ(vr)} < r + 1. If #{φ(v0), . . . , φ(vr)} < r then #{φ(v0), . . . , φ̂(vi), . . . , φ(vr)} <
r. Hence, every summand in

∑
i(−1)iφr(〈v0, . . . , v̂i, . . . , vr〉) vanishes. It remains to check the

case when #{φ(v0), . . . , φ(vr)} = r. Then exactly two vertices are identified with each other.
W.l.o.g. we may assume these are v0 amd v1. Then we have

φ(〈v0, v̂1, . . . , vr〉) = 〈φ(v0), φ̂(v1), . . . , φ(vr)〉 = 〈φ̂(v0), φ(v1), . . . , φ(vr)〉 = φ(〈v̂0, v1, . . . , vr〉)

and all other summands of
∑

i(−1)iφr(〈v0, . . . , v̂i, . . . , vr〉) vanish.

[4 mark, bookwork]

(b) A chain homotopy between φ and ψ is a sequence of group homomorphisms hi : Ci(K) →
Ci+1(L) such that φi − ψi = di+1 ◦ hi + hi−1 ◦ di. [1 mark, bookwork]
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(c) Consider an element x ∈ Zi(K), i.e. di(x) = 0 then

φi(x)− ψi(x) = di+1(hi(x)) + hi−1(di(x)) = di+1(hi(x)) + 0 = di+1(hi(x)) ∈ Bi(L).

Hence, φ∗(x)− ψ∗(x) = 0 in Hi(L). [3 mark, bookwork]

(d) It’s easy to see, that for every 〈vi, vi+1〉 there is an acyclic subcomplex of L supporting both
φ(〈vi, vi+1〉) and ψ(〈vi, vi+1〉). For example for i = 2 such an acyclic subcomplex is formed
by the triangles 〈w2, w3, w0〉 and 〈w0, w5, w6〉 and their faces. Then the proposition on acyclic
support implies the existence of a chain homotopy. [2 mark, new example]

To construct a chain homotopy one starts with paths connecting φ(〈vi) and ψ(〈vi). These are
used to construct the elements h0(〈vi) ∈ H1(L):

h0(〈v1〉) = h0(〈v4〉) = 0,

h0(〈v2〉) = 〈w2, w0〉+ 〈w0, w6〉,
h0(〈v3〉) = 〈w3, w0〉+ 〈w0, w5〉,

Now, we compute
h0(d(〈vi, vi+1〉)) + ψ(〈vi, vi+1〉)− φ(〈vi, vi+1〉).

Which is always a cycle. For example for i = 2 we obtain

h0(d(〈v2, v3〉))+ψ(〈v2, v3〉)−φ(〈v2, v3〉) = −〈w2, w0〉−〈w0, w6〉+〈w3, w0〉+〈w0, w5〉+〈w2, w3〉−〈w6, w5〉.

The support of this cycle is shown in the following picture.

w0

w1

w2 w3

w4

w5w6

Since the condition for acyclic support is fulfilled we know that this cycle is also a boundary.
Hence, it is possible to find a 2-chain z with d(z) = h0(d(〈vi, vi+1〉))+ψ(〈vi, vi+1〉)−φ(〈vi, vi+1〉).
For i = 2 this chain can be in princple read off the above picture. Indeed, the 2-chain is given
by z = 〈w2, w3, w0〉 + 〈w0, w5, w6〉. Now we use this z as image of 〈vi, vi+1〉 under h1. In this
way one obtains a chain homotopy as follows.

h0(〈v1〉) = h0(〈v4〉) = 0,

h0(〈v2〉) = 〈w2, w0〉+ 〈w0, w6〉,
h0(〈v3〉) = 〈w3, w0〉+ 〈w0, w5〉,

h1(〈v1, v2〉) = 〈w1, w2, w0〉+ 〈w0, w6, w1〉,
h1(〈v2, v3〉) = 〈w2, w3, w0〉+ 〈w0, w5, w6〉,
h1(〈v3, v4〉) = 〈w3, w4, w0〉+ 〈w0, w4, w5〉.

[4 mark, new example]
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Only a few people attempted this question. There was some confusion about the role of L(σ) and
hi(σ). Although there is a connection it is not the same kind object. Indeed, L(σ) is a simplicial
complex (a subcomplex of L), but hi(σ) is an (r + 1)-chain. The proof of the proposition on acyclic
support constructs hi(σ), such that it is supported inside of L(σ).

B9.

(a) Define what is meant by the degree deg(f) of a continuous selfmap f : Sn → Sn of a sphere.
Show that your definition does not depend on the choice of a triangulation.

(b) Calculate the degree of the map f : S1 → S1 given by f(z) = z−1 for z ∈ S1 ⊂ C.

(c) Given two continuous maps f, g : Sn → Sn show that deg(f ◦ g) = deg(f) · deg(g) holds.

(d) Show that a homeomorphism f : Sn → Sn has either degree 1 or −1.

[15 marks]

Solution

(a) Consider a triangulation h : |K| → Sn of the of the n-sphere. Then f : Sn → Sn induces an
map (h−1 ◦f ◦h) : |K| → |K|. Hence, a homomorphism (h−1 ◦f ◦h)∗ : H

n(K)→ Hn(K). Since
Hn(K) ∼= Z the homomorphism (h−1 ◦ f ◦ h)∗ must be given by [z] 7→ λ[z] for some λ ∈ Z. We
then define deg(f) = λ. [3 mark, bookwork]

Assume, there is a second triangulation k : |L| → Sn. Then we have a homeomorphism g =
h−1 ◦ k : |L| → |K|. With this definition we obtain

(k−1◦f ◦k)∗([z]) = (g−1◦h−1◦f ◦h◦g)∗([z]) = g−1∗ ((h−1◦f ◦h)∗(g∗([z]))) = g−1∗ (λg∗([z])) = λ[z],

where the equalities follow from the definition of g, the functoriality of homology, the definition
of λ above and the fact that g−1∗ is a homomorphism. [3 mark, bookwork]

(b) We consider the simplicial complex K in C formed by 1, i, −1 and −i as vertices and the
edges 〈1, i〉, 〈i,−1〉, 〈−1,−i〉, 〈−i, 1〉. Via radial projection this gives a triangulation of S1.
A simplicial approximation is given by 1 7→ 1, i 7→ −i, −1 7→ −1 and −i 7→ i. Note, that a
generator of Hn(K) is given by

z = [〈1, i〉+ 〈i,−1〉+ 〈−1,−i〉+ 〈−i, 1〉]

Now,
f∗([z]) = [〈1,−i〉+ 〈−i,−1〉+ 〈−1, i〉+ 〈i, 1〉] = −[z]

Hence, deg(f) = −1.

[4 mark, similar to question set]

(c) deg(f ◦ g) is given by

(f ◦ g)∗([z]) = f∗(g∗([z])) = f∗(deg(g)[z]) = deg(g) · (f∗([z])) = deg(g) deg(f)[z].

I.e. deg(f ◦ g) = deg f · deg g. Note, that the equalities above follow from the functoriality of
homology, the definition of deg(g), the fact that f∗ is a group homomorphism and the definition
of deg(f). [3 mark, new]
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(d) Consider idSn = f ◦ f−1. By the above and the fact that deg(id) = 1 one obtains 1 =
deg(f) · deg(f−1). But 1 and −1 are the only elements of Z with multiplicative inverses.

[2 mark, new]

[Total: 15 marks]
Again, only a few people attempted this question. They struggled to find a simplicial approximation

for the map in (b).

B10.

(a) Define what is meant by saying that two continuous functions f0 : X → Y and f1 : X → Y
between topological spaces X and Y are homotopic. Prove that homotopy is an equivalence
relation on the set of continuous functions from X to Y .

(b) Define what is meant by saying that two topological spaces X and Y are homotopy equivalent.
Prove that, if X and Y are homotopy equivalent, then X is path-connected if and only if Y is
path-connected.

[15 marks]

Solution

(a) Two continuous functions of topological spaces f0 : X → Y and f1 : X → Y are homotopic ,
written f0 ' f1 , if there is a continuous map H : X × I → Y such that H(x, 0) = f0(x) and
H(x, 1) = f1(x). We call H a homotopy between f0 and f1 and write H : f0 ' f1 : X → Y .

[2 mark, bookwork]

reflexivity A homotopy for f ' f is given by H(x, t) = f(x).

symmetry If H : f0 ' f1 : X → Y , then H ′ : f1 ' f0 : X → Y , with H ′(x, t) := H(x, 1− t).
transitivity Assume H : f0 ' f1 : X → Y and K : f1 ' f2 : X → Y . Then L : f0 ' f2 : X →

Y with

L(x, t)

{
H(x, 2t) 0 6 t 6 1/2

H(x, 2t− 1) 1/2 6 t 6 1
,

which is well-defined and continuous by the Gluing Lemma.

[6 mark, bookwork]

(b) A continuous function f : X → Y is a homotopy equivalence when there is homotopy inverse
g : Y → X which means that g ◦ f ' idX : X → X and f ◦ g ' idY : Y → Y . In this case we
say that X and Y are homotopy equivalent spaces and denote this by X ≡ Y.

Suppose that X and Y are homotopy equivalent spaces with maps as above. Suppose that X
is path-connected. To see that Y is path-connected, let y0, y1 ∈ Y . Then since X is path-
connected there is a path σ : [0, 1]→ X from g(y0) to g(y1). Hence f ◦ σ : [0, 1]→ Y is a path
in Y from f(g(y0)) to f(g(y1)) . Let H : f ◦ g ' idY . Then σ0(t) = H(y0, t) gives a path in Y
from f(g(y0)) to y0 and σ1(t) = H(y1, t) gives a path in Y from f(g(y1)) to y1. The product
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of the three paths σ̄0 (reverse path), σ and σ1 gives a path in Y from y0 to y1 . Hence Y is
path-connected. In just the same way, reversing the roles of f and g , if Y is path-connected
then so is X. [7 mark, bookwork]

[Total: 15 marks]
Most people attempted this question and the first part was generally done well. In (b) quite a few

people tried to used the fact that g is an actual inverse for f . However, this is not true in general, as
g is only a homotopy inverse. One solution used the homotopy invariance of homology and concluded
that H0(X) = Z⇔ H0(Y ) = Z. Hence, by a result from the problem sheets also X is path-connected
if and only if Y is path-connected. This was a correct argument and I awarded full marks for it.

B11. Consider the simplicial complex in R8 with vertices e1, . . . , e8 forming simplices according to
the following picture:

8

6 7

4

5

1 2 3 1

3

2

2

3

1

(a) Calculate the simplicial homology groups of the simplicial complex above. You may use the
fact, that every 1-cycle is homologous to one involving only edges on the boundary of the
template and e.g. the following “internal” edges: 〈2, 4〉, 〈3, 5〉, 〈3, 6〉, 〈2, 7〉 and 〈1, 8〉.

(b) Use the classification theorem to show that the underlying topological space is not a closed
surface.

[15 marks]

Solution

(a) To find Z1(K) first note, that for every 1-cycle x one has x ∼ x′ for some x′ only involving edges
corresponding to edges on the boundary of the template and e.g. the following “internal” edges
〈3, 4〉, 〈3, 5〉, 〈2, 6〉, 〈2, 7〉 and 〈1, 8〉. Since all other edges can be eliminated via boundaries of
triangles. However, since x ∈ Z1(K) we also have x′ ∈ Z1(K) and so x′ can not involve these
internal edges, since their “internal” vertices wouldn’t cancel out when taking the boundary.

Consider a cycle
x′ = λ1〈1, 3〉+ λ2〈3, 2〉+ λ3〈2, 1〉.

Now, d(x′) = 0 implies λ1 = λ2 = λ3. Hence, the subgroup V of cycles involving only edges on
the boundary of the template is generated by

x = 〈1, 3〉+ 〈3, 2〉+ 〈2, 1〉.
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We have Z1(K) = V +B1(K). It remains to determine V ∩B1(K). Consider, some non-trivial
cycle Z2(K). For the inner edges of the template to cancel out when taking the boundary the
cycle has to be a multiple of the sum over all triangles (with compatible orientation, e.g. all
clockwise orientented), which we denote by y. But then

d(`y) = ` · 3 · (〈1, 3〉+ 〈3, 2〉+ 〈2, 1〉) = ` · 3x.

Hence, V ∩B1(K) = 3V and H1(K) = Z1(K)/B1(K) ∼= V/(B1 ∩ V ) ∼= Z/3Z.

For z ∈ Z2(V ) it must be a multiple of y, but since d(y) 6= 0 we have H2(K) = Z2(K) = 0.

[12 marks, similar to question set]

(b) For the Euler characteristic we obtain

χ = β0 − β1 + β2 = 1− 0 + 0 = 1.

From the classification theorem we see that the only possible closed surface is the projective
plane. On the other hand, we have H1(P2) = Z/2Z 6= Z/3Z = H1(K).

[3 marks, new]

[Total: 15 marks] This was the standard calculation as demonstrated in the lectures and
practiced on the problem sheets. Most people who attempted the question found the correct solution.
Two serious mistakes were the following kind of arguments:

• Since C2(K) ∼= Zn, we have B1(K) ∼= Zn.
This is not true as dr is usually not injective!

• Z1(K) ∼= Z2 and B1(K) ∼= Z . Hence H1(K) ∼= Z.
This is not true as H1(K) could be of the form Z×(Z/kZ) as well, where every k > 0 is possible.
Indeed, the quotient G/H of a group G by a normal subgroup H ⊂ G is a construction which
heavily depends on the embedding of the group H inside the group G. Hence, knowing H up to
isomorphy doesn’t help much. We really need to understand H as a subgroup of G.

END OF EXAMINATION PAPER
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