
Autumn Semester 2017–2018

MATH41071/MATH61071 Algebraic topology

§2. Simplicial Surfaces

2.1 Definition. Suppose that v0, v1, v2 ∈ Rn are non-colinear points.
Then the triangle 〈v0, v1, v2〉 with vertices v0, v1, v2 is the set

〈v0, v1, v2〉 = { t0v0 + t1v1 + t2v2 | ti > 0, t0 + t1 + t2 = 1 }.

The edges of the triangle are 〈v0, v1〉 = { t0v0 + t1v1 | ti > 0, t0 + t1 = 1 },
〈v0, v2〉 and 〈v1, v2〉.
The set of points in the triangle not lying on an edge is called the interior
of the triangle.

2.2 Proposition. Given two triangles 〈v0, v1, v2〉 and 〈v′0, v′1, v′2〉 then the
bijection of the vertices vi 7→ v′i induces a homeomorphism between the
triangle by linear extension:

2∑
i=0

tivi 7→
2∑

i=0

tiv
′
i.

2.3 Definition. A (geometric) simplicial surface is a finite set of triangles
in some Rn satisfying:

(a) the intersection condition: the intersection of each pair of triangles
in K is

(i) empty, or

(ii) a vertex of each of the triangles, or

(iii) an edge of each of the triangles;

(b) the connectivity condition: for each pair of vertices of triangles in
K, there is a path along edges from one vertex to the other;

(c) the link condition: for each vertex v of a triangle in K, the link of
v, link(v), the set of edges opposite v in the triangles of K having v
as a vertex, is a simple closed polygon.

2.4 Definition. Given a simplicial surface K in Rn, the underlying space
|K| of K is the set of points in Rn which belong to some triangle of K with
the usual topology as a subset of Rn.
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2.5 Proposition. If K is a simplicial surface then |K| is a path-connected
compact topological surface (a closed surface).

Proof. |K| is a finite union of compact sets in Rn and so is compact. It is a
subspace of Rn and so is Hausdorff and second countable.
The connectivity condition on K guarantees that |K| is path-connected:
the triangles are path-connected since they are convex subsets of Rn and so
every point can be connected to the vertices in its triangle by a straight line;
the connectivity condition shows that there is a path between each pair of
vertices.
Finally, |K| is locally Euclidean since each point of |K| lies in an open set
in |K| homeomorphic to an open set in R2. To see this observe that there
are three sorts of point:

(i) the interior points of a triangle: the interior of the triangle provides
the open set;

(ii) the interior point of an edge: observe that the link condition implies
that each edge lies in precisely two triangles [Exercise] and so that
interior of these two triangles together with the interior of the edge
forms the required open neighbourhood;

(iii) vertices: the link condition implies that the union of the triangles
containing the vertex is homeomorphic to a closed disc and so the
corresponding open disc provides the required open neighbourhood.

2.6 Definition. A triangulation of a closed surface S is a homeomorphism
h : |K| → S where K is a simplicial surface.

2.7 Theorem. [T. Rado, 1925] Every closed surface has a triangulation.

Proof. Omitted.

2.8 Examples. (a) Write v0 = (0, 0, 0), v1 = (1, 0, 0), v2 = (0, 1, 0), v3 =
(0, 0, 1). Let

K = { 〈v0, v1, v2〉, 〈v0, v1, v3〉, 〈v0, v2, v3〉, 〈v1, v2, v3〉 }.

Then K is a simplicial surface and |K| ∼= S2 by radial projection from an
interior point of the tetrahedron |K|.
(b) Now write vi for the ith standard basis vector in R9, 1 6 i 6 9. Let
K be the set of triangles 〈vi, vj , vk〉 where (i, j, k) are the vertex labels of a
triangle in the triangulation of the unit square I2 shown below. Then K is
a simplicial surface with underlying space |K| homeomorphic to the torus.
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First of all notice that the intersection condition is automatic since the
vertices are linearly independent vectors. For example

〈v1, v2, v3〉 = { (t1, t2, t3, 0, 0, 0, 0, 0, 0) | ti > 0,
∑

ti = 1 };

〈v2, v3, v8〉 = { (0, t2, t3, 0, 0, 0, 0, t8, 0) | ti > 0,
∑

ti = 1 }

and so

〈v1, v2, v3〉∩〈v2, v3, v9〉 = { (0, t2, t3, 0, 0, 0, 0, 0, 0) | ti > 0,
∑

ti = 1 } = 〈v2, v3〉.

So two triangles with two common vertices intersect in their common edge,
two triangles with one common vertex intersect in this vertex and two tri-
angles with no common vertices do not intersect.
The connectivity condition is obvious from the picture.
The link condition can be checked for each vertex.
Now we can define a continuous function f : I2 → |K| by mapping the
point i in the unit square (in the above picture) by i 7→ vi and extend-
ing linearly over each triangle. This is continuous by the Gluing Lemma
(since the triangles are all closed subsets of I2) and induces a continuous
bijection F : I2/∼ → |K| which is therefore a homeomorphism where ∼ is
the equivalence relation given by (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) so that
I2/∼ ∼= S1 × S1.

(c) Similarly the following diagram gives a template for a triangulation of
the Klein bottle.
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Recall (Problems 1, Question 6) that the Klein Bottle is given by I2/∼
where (s, 0) ∼ (s, 1) and (0, t) ∼ (1, 1− t).
(d) The following diagram gives a template for a triagulation of the projec-
tive plane.
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Recall from the proof of Proposition 1.20 that the projective plane is home-
omorphic to D2/∼ where x ∼ x′ if and only if x = x′ or x′ = −x ∈ S1 ⊂ D2.
By radial projection from the centre of the disc and the square D2 ∼= I2 and
under this homeomorphism the equivalence relation on D2 corresponds to
the relation on I2 given by (s, 0) ∼ (1− s, 1) and (0, t) ∼ (1, 1− t).

2.9 Remarks. Suppose that K1 and K2 are simplicial surfaces such that
there is a bijection f from the vertices of K1 to the vertices of K2 such that

〈v0, v1, v2〉 is a triangle in K1 ⇔ 〈f(v0), f(v1), f(v2)〉 is a triangle in K2.

Then f induces a homeomorphism

|f | : |K1| → |K2|

by linear extension of f over each triangle. [|f | is continuous on each triangle
and so on |K1| by the Gluing Lemma and its inverse is given by |f−1|.]
This means that given a geometric simplicial surface K, then the set of
vertices V (K) and the list of which triples are the vertices of a triangle
determine the underlying space of K up to homeomorphism. This leads to
the following definition.

2.10 Definition. An (abstract) simplicial surface K is a finite set V =
{v1, v2, . . . , vk} (the vertices) together with a collection of subsets of order
3 (the triangles) which satisfies the connectivity and link conditions as in
Definition 2.3.
An isomorphism f : K1 → K2 of two abstract simplicial surfaces is a bijec-
tion f : V1 → V2 of the two vertex sets such that

〈v0, v1, v2〉 is a triangle in K1 ⇔ 〈f(v0), f(v1), f(v2)〉 is a triangle in K2.

2.11 Remarks. An abstract simplicial surface K with V (K) = { vi | 1 6
i 6 k } can be realised as a geometric simplicial surface in Rk by putting
vi = εi the i’th standard basis vector. As in Example 2.8(b) the intersection
condition is automatic. By the above remarks (2.9) any two geometric sim-
plicial surfaces corresponding to K will have a homeomorphic underlying
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spaces. Thus the underlying space of an abstract simplicial surface |K| is
determined up to homeomorphism.
Thus the homeomorphism type of a topological surface S is completely de-
termined by the combinatorial information in an abstract simplicial surface
K such that |K| ∼= S. This leads to two questions.

(i) What information about an abstract simplicial surface K is relevant
to the topology of |K| ?

(ii) Given two simplicial surfaces K1 and K2, when is it true that |K1| ∼=
|K1| ?

Representing a simplicial surface by a symbol

2.12 Definition. A topological polygon (or n-gon) is a topological space
which is homeomorphic to the closed disc D2 with n points v1, v2, . . . vn
(vertices) on the ‘boundary’ (i.e. the subspace corresponding to S1 ⊂ D2

— this can be shown to be well-defined not depending on the choice of
homeomorphism). The vertices are labelled so that vi and vi+1 are adjacent
for all i (modulo n). The arcs v1v2, v2v3, . . . vnv1 are the edges of the
polygon.

2.13 Example. Let

K = { 〈vi, vj , vk〉 | ijk = 125, 126, 134, 136, 145, 234, 235, 246, 356, 456 }.

We can take the ten triangles and (starting from 〈v1, v2, v5〉) attach then
one at a time by an edge according to the labelling in K. This leads to a
topological polygon with twelve edges. The labelling indicates a pairing of
the edges. Using the argument of Example 2.8(b) we can see that identi-
fying the edges of this polygon in pairs according to the labelling gives an
identification space which is homeomorphic to the the underlying space |K|.

2.14 Proposition. Given a simplicial surface K, its underlying space is
homeomorphic to the identification space formed by identifying the edges of
a topological polygon in pairs.

Outline proof. Given a simplicial surface K with n triangles we can show
by induction and the connectivity and link conditions that the triangles can
be labelled σ1, σ2, . . . , σn so that each triangle σi has at least one edge ei
in common with one of the triangles σ1, . . . σi−1 for 1 < i 6 n.
Assume this is not possible. Then after step i we don’t find a triangle in
K \ {σ1, . . . , σi−1} having an edge in common with one of the triangles σ1,
. . . , σi−1. Hence, the edge sets are disjoint. On the other hand because of the
connectivity condition there must be a triangle in K \ {σ1, . . . , σi−1} having
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a vertex v in common with on of the triangles σ1, . . . σi−1. By the link condi-
tion there must be a vertex w in the link with one ingoing edge 〈v′, w〉 being
part of {σ1, . . . , σi−1} and the other one 〈v′′, w〉 being in K \ {σ1, . . . , σi−1},
else the link would be disconnected. Hence, the corresponding triangles
〈v, v′, w〉 and 〈v, v′′, w〉 lie in {σ1, . . . , σi−1} and K \ {σ1, . . . , σi−1}, respec-
tively, and share an edge. A contradiction.
Having done this we choose a σ′i for each i, 1 6 i 6 n such that the σ′i
are all disjoint with linear homeomorphisms φi : σ

′
i → σi. Then there is a

continuous map

φ :
n⊔

i=1

σ′i → |K|

defined by φ|σ′i = φi.
Each of the edges e2, . . . en occurs in two triangles in K. We glue the
corresponding triangles together along the corresponding edges by

x1 ∼ x2 ⇔ φ(x1) = φ(x2) ∈ ei for some i, 1 < i 6 n (or x1 = x2).

Put P =
⊔
σ′i/∼. Then φ induces as usual a continuous map

φ : P → |K|.

P is a topological polygon. The edges of triangles σ′i which do not correspond
to the ei make up the edges of P . The map φ identifies the edges of P in
pairs. �

2.15 Notation. We can represent a polygon with edges to be identified
in pairs by a symbol as follows. Assign to each edge a letter, assigning the
same letter to two edges if and only if they are to be identified. Now starting
at any vertex write down the letters in sequence going round the boundary
assigning the exponent −1 on the second appearance of any letter if and only
if the order of the vertices is reversed. Conversely, given a symbol of this
type in which each letter appears twice, there is a corresponding polygon
with edges identified in pairs.

2.16 Example. We can write down the symbol corresponding to the poly-
gon obtained in Example 2.13. The actual symbol depends on the choices
made when constructing the polygon.

2.17 Remarks. (a) The topological space obtained by identifying the
edges of a polygon in pairs depends up to homeomorphism only on the
matched pairs of edges and the orders of the vertices. Thus the symbol
determines the identification space up to homeomorphism.

(b) Identifying the edges of a polygon in pairs gives rise to a path-connected
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closed surface. To prove that the quotient space is locally Euclidean we con-
sider three types of points: (a) points arising from the points in the interior
of the polygon (in this case the interior of the polygon provides the required
open set); (b) points arising from identifying a pair of points in the interior
of edges; (c) points arising from identifying several vertices.

(c) Different choices in constructing the topological polygon for Proposi-
tion 2.14 and in the notation of Notation 2.15 can lead to different symbols
from the same simplicial surface.

2.18 Problem. When do two symbols represent homeomorphic topologi-
cal surfaces?

2.19 Definition. Two symbols are equivalent if they represent the same
surface up to homeomorphism.

2.20 Theorem. [Classification Theorem for Surface Symbols] Ev-
ery symbol is equivalent to one and only one of

(i) xx−1,

(ii) x1y1x
−1
1 y−11 x2y2x

−1
2 y−12 . . . xgygx

−1
g y−1g (where g > 1),

(iii) x1x1x2x2 . . . xgxg (where g > 1).

Rules for the manipulation of symbols

2.21 Proposition. The following operations replace a symbol by an equiv-
alent symbol:

(i) any letter can be renamed;

(ii) x can be replaced by x−1 (writing (x−1)−1 = x);

(iii) a symbol can be cyclically permuted;

(iv) a symbol can be formally inverted;

(v) xx−1U ∼ U ;

(vi) xUxV ∼ xxU−1V ;

(vii) xUV x−1W ∼ xV Ux−1W .

Here U , V and W standard for sequences of letters (syllables) and U−1 is
the formal inverse of U .

Proof. Parts (i), (ii), (iii) and (iv) follow immediately from different choices
made when writing down the symbol from the polygon with edges to be
identified in pairs (Notation 2.15).
The other parts are proved by cut and paste arguments indicated as follows.

(v)
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U

xx identify x
x

U

(vi)

x

x

V Ut

U

V t

t

x
cut along t

glue along x

Thus xUxV ∼ ttU−1V ∼ xxU−1V (using (i)).

(vii)

x

x

W

U

V

t
V

Ut

W

t

xcut along t

glue along x

Thus xUV x−1W ∼ tV Ut−1W ∼ xV Ux−1W (using (i)). �

2.22 Corollary. Syllables of the form (i) xx, (ii) xUx−1 commute with
every letter in a symbol (up to equivalence).

Proof. (i)

UxxyV ∼ xxyV U (by 2.21(iii))

∼ xy−1xV U (by 2.21(vi))

∼ U−1V −1x−1yx−1 (by 2.21(iv))

∼ x−1yx−1U−1V −1 (by 2.21(iii))

∼ x−1x−1y−1U−1V −1 (by 2.21(vi))

∼ V Uyxx (by 2.21(iv))

∼ UyxxV (by 2.21(iii)).
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(ii)

V xUx−1yW ∼ x−1yWV xU (by 2.21(iii))

∼ x−1WV yxU (by 2.21(vii))

∼ V yxUx−1W (by 2.21(iii)) .

�

2.23 Corollary. x1x1x2y2x
−1
2 y−12 U ∼ x1x1x2x2x3x3U .

Proof.

x1x1x2y2x
−1
2 y−12 U ∼ x1x−12 x1y2x

−1
2 y−12 U (by 2.21(vi))

∼ x1x−12 x−12 y−12 x−11 y−12 U (by 2.21(vi))

∼ x1x−12 x−12 y−12 y−12 x1U (by 2.21(vi))

∼ x1x1x−12 x−12 y−12 y−12 U (by 2.22(i))

∼ x1x1x2x2x3x3U (by 2.21(i) and (ii).

�

Proof of Theorem 2.20 (Reduction to standard form).
Step 1. Given a symbol W , by repeated application of 2.21(vi) and 2.22(i)
we obtain an equivalent symbol NA where N is a symbol of type (iii) (or ∅)
and A is a symbol in which each pair of equal letters has opposite exponents.
If A = ∅ we have a symbol of the required form.
Step 2. We write W ∼ NM where N is as above and M is a symbol of
type (ii) (or ∅). This is done by induction.
Suppose that NA ∼ NBC where B is of type (ii) (or ∅) and C has the
property that equal letters have opposite exponents. If C 6= ∅ then NBC =
NBxDx−1E. If D contains a syllable of the form yUy−1 then this can be
moved to the right of x−1 by 2.22(ii) and so we may assume that no two
letters of D are the same.
If D = ∅ then we may cancel xx−1 by 2.21(v) [unless N = B = E = ∅ in
which case the symbol is xx−1 of the required form (type (i)]. This reduces
the length of C by 2.
If D 6= ∅ write D = Fy so that

NBC = NBxFyx−1Gy−1H

∼ NBxFyGx−1y−1H (by 2.21(vii))

∼ NBxGFyx−1y−1H (by 2.21(vii))

∼ NBxyx−1y−1GFH (by 2.22(ii))

Thus in either case NBC ∼ NB′C ′ where B′ is of type (ii) and C ′ is shorter
than C.
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Induction on the length of C shows that W ∼ NA ∼ NM , as required. If
N or M = ∅ we have the required form.
Step 3. If N and M are both non-empty then NM is equivalent to a symbol
of type (iii) by Corollary 2.23.
The proof that each symbol is equivalent to only one symbol in standard
form will come later. �

2.24 Example. In the following example I have tried to indicate which
letters are involved in applying each rule, by means of dots, brackets and
braces.

aḃ cdef︸︷︷︸ ḃgdhe−1gc−1fa−1h
∼ a(bb)f−1ė−1 d−1c−1gdh︸ ︷︷ ︸ ė−1gc−1fa−1h by 2.21(vi)

∼ a(bb)f−1(e−1e−1)h−1d−1g−1cdgc−1fa−1h by 2.21(vi)

∼ (bb)(e−1e−1)ȧ f−1h−1d−1g−1cdgc−1f︸ ︷︷ ︸ ȧ−1h by 2.22(i)


Step 1

∼ (bb)(e−1e−1) ȧȧ−1︸ ︷︷ ︸ f−1h−1d−1g−1cdgc−1fh by 2.22(ii)

∼ (bb)(e−1e−1)ḟ−1h−1 d−1g−1cd︸ ︷︷ ︸ gc−1ḟh by 2.21(v)

∼ (bb)(e−1e−1)ḟ−1h−1gċ−1 ḟ(d−1g−1)︸ ︷︷ ︸ ċdh by 2.22(ii)

∼ (bb)(e−1e−1)ḟ−1(h−1gċ−1)(d−1g−1)ḟ ċdh by 2.21(vii)

∼ (bb)(e−1e−1)ḟ−1d−1g−1h−1g ċ−1ḟ ċ︸ ︷︷ ︸ dh by 2.21(vii)

∼ (bb)(e−1e−1)(f−1c−1fc)ḋ−1 g−1h−1g︸ ︷︷ ︸ ḋh by 2.22(ii)

∼ (bb)(e−1e−1)(f−1c−1fc) ḋ−1ḋ︸ ︷︷ ︸ g−1h−1gh by 2.22(ii)

∼ (bb)(e−1e−1)(f−1c−1fc)(g−1h−1gh) by 2.21(v)



Step 2

∼ x1x1x2x2x3x3x4x4x5x5x6x6 by 2.23 and 2.21(i) Step 3

which is of the required standard form.

Geomtrical interpretation of the symbol classification theorem

2.25 Proposition. Suppose that W1 and W2 are symbols (with no let-
ter in common) representing surfaces S1 and S2. Then the symbol W1W2

represents the connected sum S1#S2.

Proof. The proof is by a cut and paste argument.

2.26 Corollary. Every closed surface is homeomorphic to one of the stan-
dard surfaces listed in Theorem 1.15.
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Proof. By the Triangulation Theorem (Theorem 2.7) every topological sur-
face may be represented by a symbol and by the Symbol Classification The-
orem this can be taken to be of the form of one of the symbols listed in that
theorem. The result now follows from Proposition 2.25 once we observe
that:

• the symbol xx−1 represents S2 (by Problems 1, Question 5);

• the symbol xyx−1y−1 represents T1 = S1 × S1 (by Problems 1, Ques-
tion 4);

• the symbol xx represents P1 = P 2 (by the observation thatD2/∼ ∼= P 2

in the proof of Proposition 1.20).

2.27 Corollary. P1#T1 ∼= P3.

Proof. By Proposition 2.25 this is the geometrical version of Corollary 2.23.
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