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§4. Simplicial Complexes and Simplicial
Homology

Geometric simplicial complexes

4.1 Definition. A finite subset { v0, v1, . . . , vr } ⊂ Rn is said to be affinely
independent if the set of vectors { v1 − v0, v2 − v0, . . . , vr − v0 } is linearly
independent. By convention, when r = 0 we say that the singleton {v0} is
affinely independent.
Given an affinely independent set { v0, v1, . . . , vr } ⊂ Rn then the closed
r-simplex with vertices v0, v1, . . . , vr is the subset

〈v0, v1, . . . , vr〉 =
{ r∑
i=0

tivi

∣∣∣ ti > 0,
r∑
i=0

ti = 1
}
⊂ Rn.

The interior of the simplex σ = 〈v0, v1, . . . , vr〉 is the set of points of the
simplex for which all ti > 0, it is denoted by σ◦. The boundary of the simplex
consists of all other points of the simplex and it is often denoted by ∂σ.
The dimension of the simplex is r.
If σ = 〈v0, v1, . . . , vr〉 is an r-simplex, then a face of σ is a (non-empty)
simplex τ whose vertices are a subset of the vertices of σ. We write τ ≺ σ
to indicate that τ is a face of σ. A proper face of σ is a face other than σ
itself.

Note. The plural of ‘simplex’ is ‘simplices’.

4.2 Definition. The standard r-simplex is given by

∆r = 〈ε1, ε2, . . . , εr+1〉 =
{

(t0, t1, . . . tr)
∣∣∣ ti > 0,

r∑
i=0

ti = 1
}
⊂ Rr+1

where { ε1, ε2, . . . , εr+1 } is the standard basis of Rr+1 given by the columns
of the (r + 1)× (r + 1) identity matrix.

4.3 Definition. A (geometric) simplicial complex is a non-empty finite set
K of simplices in some Euclidean space Rn such that

(a) the face condition: if σ ∈ K and τ ≺ σ then τ ∈ K,

(b) the intersection condition: if σ1 and σ2 ∈ K then σ1 ∩ σ2 = ∅ or
σ1 ∩ σ2 ≺ σ1, σ1 ∩ σ2 ≺ σ2.

We write V (K) for the set of vertices of K.
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4.4 Definition. The dimension of a simplicial complex K, denoted dimK,
is the largest dimension of a simplex in K.

4.5 Definition. The underlying space |K| of a simplicial complex K is
given by

|K| =
⋃
σ∈K

σ ⊂ Rn

with the subspace topology.

4.6 Definition. Given a simplicial complex K and a non-negative integer
r, the r-skeleton of K, denoted K [r] is the set of simplices in K of dimension
no greater than r. Clearly, the r-skeleton of K is a simplicial complex.

4.7 Definition. A triangulation of a topological space X is a homeomor-
phism h : |K| → X from the underlying space of some simplicial complex
K. A topological space which has a triangulation is said to be triangulable.

4.8 Examples. (a) A simplicial surface K as defined in Definition 2.3
determines a simplicial complex K̄ of dimension 2. The simplicial complex
K̄ consists of the triangles of simplicial surface K together with the edges of
K and the vertices of K. A 2-dimensional simplicial complex is much more
general than a simplicial surface since we do not require the connectivity
condition or the link condition.

(b) For a non-negative integer n, the n-simplex together with all of its faces
is a simplicial complex which we denote ∆̄n. It is intuitively clear that |∆̄n|
is homeomorphic to the n-ball Dn (by radial projection) and so the n-ball
is a triangulable. [A formal proof of this is indicated on Problems 4.]

(c) Similarly, for n > 1, the underlying space of (∆̄n)[n−1], the (n − 1) −
skeleton of ∆̄n, is homeomorphic to the (n− 1)-sphere Sn−1 which is there-
fore triangulable. [This is a generalization of Example 2.8(a).]

Abstract simplicial complexes

4.9 Proposition. Each point of an r-simplex σ = 〈v0, v1, . . . , vr〉 may be
uniquely written in the form x =

∑r
i=0 tivi, with

∑
ti = 1. The coefficients

t0, t1, . . . tr are called the barycentric coordinates of the point x.

Proof. Exercise. �

4.10 Definition. Given two simplicial complexes K1 and K2, an isomor-
phism f : K1 → K2 is given by a bijection f : V (K1) → V (K2) such that
〈v0, v1, . . . , vr〉 is an r-simplex of K1 if and only if 〈f(v0), f(v1), . . . , f(vr)〉
is a r-simplex of K2.
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4.11 Corollary. Given two r-simplices σ = 〈v0, v1, . . . , vr〉 and σ′ =
〈v′0, v′1, . . . , v′r〉 then a homeomorphism σ → σ′ may be defined by

∑r
i=0 tivi 7→∑r

i=0 tiv
′
i.

More generally, given an isomorphism f : K1 → K2 of simplicial complexes,
then f induces a homeomorphism |f | : |K1| → |K2| of the underlying spaces
by

|f |
( r∑
i=0

tivi

)
=

r∑
i=0

tif(vi).

Proof. Exercise. �

4.12 Definition. An (abstract) simplicial complex L consists of a finite
set V = V (L) (the vertex set of L) together with a set S = S(L) of subsets
of V (the simplex set of L) such that

(a) the vertex condition: v ∈ V ⇒ {v} ∈ S;

(b) the face condition: σ ∈ S and τ ⊂ σ ⇒ τ ∈ S.

An element v ∈ V is called a vertex of L. An element σ ∈ S is called a
simplex of L. Given simplices σ and τ , if τ ⊂ σ then we say that τ is a face
of σ. The dimension of σ = { v0, v1, . . . , vr} is r. The dimension of K is the
largest dimension of a simplex in K.
It is clear that a geometric simplicial complex K determines an abstract
simplicial complex L with vertex set V (L) = V (K) and simplex set S(L)
consisting of the subsets of of the vertex set which are the vertices of a
simplex in K.
Conversely, a realization of an abstract simplicial complex L is a geomet-
ric simplicial complex K with a bijection f : V (L) → V (K) such that
{v0, v1, . . . , vr} ∈ S(L) if and only if 〈f(v0), f(v1), . . . , f(vr)〉 ∈ K.

4.13 Proposition. Each abstract simplicial complex L has a realization
K and given two realizations K1 and K2 then the underlying spaces |K1|
and |K2| are homeomorphic. Hence, we can define the underlying space
of an abstract simplicial complex L by |L| = |K| where K is a geometric
realization of L and this is well-defined up to homeomorphism.

Proof. If L has n vertices then we find a geometric realization of L as a
geometric simplicial complex in Rn with vertices given by the standard basis
vectors of Rn (the argument of Example 2.8(b) deals with the intersection
condition). The homeomorphism between the underlying spaces of any two
geometric realizations is given by Corollary 4.11. �

4.14 Remark. From now on we will blur the distinction between abstract
and geometric simplicial complexes using the approach which is most con-
venient at the time.
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Simplicial homology groups

4.15 Definition. An orientation of an r-simplex 〈v0, v1, . . . , vr〉 is an equiv-
alence class of orderings of the vertices where two orderings are equivalent
if and only if one can be obtained from the other by an even permutation.
From now on we shall work with oriented simplices and write σ1 = σ2 if
they are the same simplex with the same orientation and σ1 = −σ2 if they
are the same simplex with opposite orientation.
Note. A 0-simplex 〈v〉 > has only one ordering of its vertex but we still
consider it as having two orientations denoted by 〈v〉 and −〈v〉.

4.16 Example. 〈v0, v1, v2, v3〉 = 〈v1, v0, v3v2〉 = 〈v1, v2, v0, v3〉 = −〈v0, v3, v2, v1〉.

4.17 Definition. Suppose that K is a simplicial complex. For r ∈ Z.
the r-chain group of K, denoted Cr(K), is the free abelian group generated
by Kr, the set of (non-empty) oriented r-simplices of K subject to the
relation σ+ τ = 0 whenever σ and τ are the same simplex with the opposite
orientations. An element of this group is called an r-dimensional chain of
K.
Thus, for r > 0, Cr(K) ∼= Zk where k is the number of r-simplices in K.
For r < 0, Cr(K) = 0.
An r-chain of K is an integral linear combination

λ1σ1 + λ1σ2 + · · ·+ λqσq

where λi ∈ Z and σi ∈ Kr.

4.18 Definition. Suppose that K is a simplicial complex. For each r ∈
Z we define the boundary homomorphism dr : Cr(K) → Cr−1(K) on the
generators of Cr(K) by

dr(〈v0, v1, . . . , vr〉) =
r∑
i=0

(−1)i〈v0, v1, . . . , v̂i, . . . , vr〉

and then extend linearly.

Here v̂i indicates that this vertex should be omitted.

Note that, by convention, d0(〈v0〉) = 0.

4.19 Remark. It is not difficult (but a little tedious) to check that this def-
inition is well-defined. For example, 〈v0, v1, v2〉 = 〈v1, v2, v0〉 = −〈v0, v2, v1〉.
On applying the above formula these give:

d2(〈v0, v1, v2〉) = 〈v1, v2〉 − 〈v0, v2〉+ 〈v0, v1〉,
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d2(〈v1, v2, v0〉) = 〈v2, v0〉 − 〈v1, v0〉+ 〈v1, v2〉,

d2(−〈v0, v2, v1〉) = −〈v2, v1〉+ 〈v0, v1〉 − 〈v0, v2〉,

and these values do all agree.

4.20 Definition. Given a simplicial complex K, the kernel of the bound-
ary homomorphism dr : Cr(K) → Cr−1(K) is called the r-cycle group of K
and is denoted Zr(K). Thus

Zr(K) = {x ∈ Cr(K) | dr(x) = 0 }.

An element of Zr(K) is called an r-dimensional cycle (or just an r-cycle) of
K.

4.21 Definition. Given a simplicial complex K, the image of the bound-
ary homomorphism dr+1 : Cr+1(K)→ Cr(K) is called the r-boundary group
of K and is denoted Br(K). Thus

Br(K) = {x ∈ Cr(K) | x = dr+1(y) for some y ∈ Cr+1(K) }.

An element of Br(K) is called an r-dimensional boundary (or just an r-
boundary) of K.

4.22 Proposition. For a simplicial complex K, dr◦dr+1 = 0: Cr+1(K)→
Cr−1(K).

The proof is given below.

4.23 Corollary. For a simplicial complex K, Br(K) ⊂ Zr(K).

Proof. This is just a restatement of the Proposition. �

4.24 Definition. For a simplicial complex K, the rth homology group,
Hr(K) is defined to be the quotient group Zr(K)/Br(K). An element of
Hr(K) is called an r-dimensional homology class of K.

4.25 Remarks. Recall that when H is a subgroup of the abelian group G,
then we may define an equivalence relation on G by g1 ∼ g2 ⇔ g1− g2 ∈ H.
The quotient group G/H has elements given by the equivalence classes [g] =
g + H = { g + h | h ∈ H } with composition given by [g1] + [g2] = [g1 + g2]
(see Definition G.6 in the background notes).
In the case of G = Zr(K), H = Br(K) this equivalence relation is called
homology. We say that cycles z1 and z2 are homologous, written z1 ∼ z2,
when z1 − z2 ∈ Br(K). The cycle z ∈ Zr(K) represents the homology class
[z] = z +Br(K) ∈ Hr(K).
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Thus a non-zero r-dimensional homology class of K is represented by an r-
cycle which is not an r-boundary. Two r-cycles represent the same homology
class if they differ by an r-boundary.

Proof of Proposition 4.22. Applying Definition 4.18,

dr ◦ dr+1(〈v0, v1, . . . , vr+1〉)

= dr

(r+1∑
i=0

(−1)i〈v0, . . . , v̂i, . . . , vr+1〉
)

=
r+1∑
i=0

(−1)idr(〈v0, . . . , v̂i, . . . , vr+1〉)

=
r+1∑
i=0

(−1)i
( i−1∑
j=0

(−1)j〈v0, . . . , v̂j , . . . , v̂i, . . . , vr+1〉+
r∑
j=i

(−1)j〈v0, . . . , v̂i, . . . , v̂j+1, . . . , vr+1〉
)

=

r+1∑
i=0

i−1∑
j=0

(−1)i+j〈v0, . . . , v̂j , . . . , v̂i, . . . , vr+1〉+

r+1∑
i=0

r∑
j=i

(−1)i+j〈v0, . . . , v̂i, . . . , v̂j+1, . . . , vr+1〉

= 0

since the coefficient of 〈v0, . . . , v̂k, . . . , v̂l, . . . , vr+1〉 is (−1)k+l+(−1)k+l−1 =
(−1)k+l−1(−1 + 1) = 0. �

4.26 Example. Suppose that K is the following simplicial complex.

v0 v1

In other words K = {〈v0, v1〉, 〈v0〉, 〈v1〉}.
Then C0(K) ∼= Z2 generated by 〈v0〉 and 〈v1〉 and C1(K) ∼= Z generated by
〈v0, v1〉. All other chain groups of K are trivial.
d1(〈v0, v1〉) = 〈v1〉 − 〈v0〉 and all other boundary homomorphisms are zero.
Thus Z0(K) = C0(K) ∼= Z2 generated by 〈v0〉 and 〈v1〉 and B0(K) ∼= Z
generated by 〈v1〉 − 〈v0〉 so that 〈v0〉 ∼ 〈v1〉.
Define f : Z0(K) → Z by f(λ0〈v0〉 + λ1〈v1〉) = λ0 + λ1. Then f is a group
epimorphism with Ker(f) = {λ〈v0〉 − λ〈v1〉} = B0(K).
Hence, by the First Isomorphism Theorem (Corollary G.9), f induces an
isomorphism
f : H0(K) = Z0(K)/B0(K)→ Z.
Z1(K) = Kerd1 = 0 and so H1(K) = 0.
There are no simplices of other dimensions and so all other homology groups
are trivial. Thus

Hr(K) ∼=
{

Z for r = 0,
0 for r 6= 0.
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4.27 Proposition. Suppose that a simplicial complex K has dimension
n. Then Hr(K) = 0 for r < 0 and r > n.

Proof. This is immediate from the definition since in these dimensions
Cr(K) = 0 so that Zr(K) = Br(K) = 0 and so Hr(K) = 0. �

4.28 Definition. A simplicial complex is said to be connected when, for
each pair of vertices in K there is a path along edges from one vertex to the
other (cf. Definition 2.3(b)).

As in the proof of Proposition 2.5, If K is connected then the underlying
space |K| is path-connected.

4.29 Proposition. Suppose that the simplicial complex K is connected.
Then H0(K) ∼= Z.

Proof. Suppose that V (K) = { v1, v2, . . . , vr } so that C0(K) ∼= Zr.
Given the two vertices v1 and vs (1 < s 6 r), since K is connected, there
is a sequence of edges, 〈w0, w1〉, 〈w1, w2〉, . . . , 〈wk−1, wk〉 with w0 = v1 and
wk = vs. Then

d1(〈w0, w1〉+ 〈w1, w2〉+ · · ·+ 〈wk−1, wk〉) = 〈vs〉 − 〈v1〉.

So 〈vs〉 − 〈v1〉 ∈ B0(K) for all 1 < s 6 r, i.e. 〈v1〉 ∼ 〈vs〉.
Now define f : Z0(K) = C0(K)→ Z by f

(∑r
i=1 λi〈vi〉

)
=
∑r

i=1 λi. Then

Ker(f) =
{ r∑
i=1

λi〈vi〉
∣∣∣ r∑
i=1

λi = 0
}

which is generated by the elements 〈vs〉−〈v1〉, 1 < s 6 r, which also generate
B0(K).
Hence Ker(f) = B0(K) and so the First Isomorphism Theorem for groups
gives an isomorphism f : H0(K) = Z0(K)/B0(K) → Z and so H0(K) ∼= Z
�.

4.30 Example. Suppose that K is the following simplicial complex.

v0 v3

v1

v2

In other wordsK = { 〈v1, v2, v3〉, 〈v0, v1〉, 〈v0, v2〉, 〈v1, v2〉, 〈v1, v3〉, 〈v2, v3〉, 〈v0〉, 〈v1〉, 〈v2〉, 〈v3〉}.
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Then Hr(K) = 0 for r < 0 and r > 2 since there are no simplices in these
dimensions.

H0(K) ∼= Z since K is connected.

To find Z1(K) we solve

d1(λ1〈v0, v1〉+ λ2〈v0, v2〉+ λ3〈v1, v2〉+ λ4〈v1, v3〉+ λ5〈v2, v3〉) = 0

and equating the coefficents of the vertices 〈vi〉 to zero this gives the system
−λ1 − λ2 = 0
λ1 − λ3 − λ4 = 0
λ2 + λ3 − λ5 = 0
λ4 + λ5 = 0

⇐⇒


λ1 + λ2 = 0
λ2 + λ3 + λ4 = 0
λ4 + λ5 = 0

(reduced to row echelon form with free variables λ3 and λ5). So the solution
space is spanned by { (1,−1, 1, 0, 0), (−1, 1, 0,−1, 1) }.
So Z1(K) ∼= Z2 is generated by

z1 = 〈v0, v1〉 − 〈v0, v2〉+ 〈v1, v2〉,
z2 = −〈v0, v1〉+ 〈v0, v2〉 − 〈v1, v3〉+ 〈v2, v3〉

(which is pretty obvious from the above picture of K).

To find B1(K) we find

d2(〈v1, v2, v3〉) = 〈v2, v3〉 − 〈v1, v3〉+ 〈v1, v2〉 = z1 + z2.

So B1(K) ∼= Z generated by z1 + z2 so that z2 ∼ −z1 or, more generally,
λ1z1 + λ2z2 ∼ (λ1 − λ2)z1.
Hence H1(K) = Z1(K)/B1(K) ∼= Z generated by [z1] (since the epimor-
phism Z1(K)→ Z given by λ1z1 + λ2z2 7→ λ1 − λ2 has kernel B1(K)).

Finally, since d2(〈v1, v2, v3〉) 6= 0, Z2(K) = 0 and so H2(K) = 0.

Thus

Hr(K) ∼=
{

Z for r = 0, 1,
0 for r 6= 0, 1.

4.31 Remarks. It is clear that a direct calculation as in the previous
example is going to become very difficult once the number of simplices in-
creases. There are several ways around this. One is to loosen the definition
of simplicial complex so that we do not need to use so many simplices. This
approach is taken by Hatcher who introduces the notion of ∆-set which is a
generalization of the notion of simplicial complex needing many fewer sim-
plices (for example you can triangulate the torus using only two 2-simplices,
three edges and one vertex if ∆-sets are used). Another approach is to make
use of a few general results from group theory to cut down the calculation
and that is what is done in this course. One useful result is the Second
Isomorphism Theorem (Proposition G.10) which is given in the background
reading. Another is the following simple observation.
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4.32 Proposition. Suppose that x, x′ ∈ Cr(K) are homologous r-chains
in a simplicial complex K. Then, if one is a cycle, so is the other: x ∈
Zr(K)⇔ x′ ∈ Zr(K).

Proof. If cycles x, x′ ∈ Cr(K) are homologous then x−x′ ∈ Br(K) ⊂ Zr(K)
and so dr(x) − dr(x

′) = dr(x − x′) = 0 so that dr(x) = dr(x
′). Thus

dr(x) = 0⇔ dr(x
′) = 0, i.e. x ∈ Zr(K)⇔ x′ ∈ Zr(K), �

4.33 Example. Let K be the simplicial complex corresponding to the
simplicial surface in Examples 2.8(b) so that |K| ∼= T1, the torus.
K has nine vertices v1, . . . v9 and so C0(K) ∼= Z9.
K has 27 edges and so C1(K) ∼= Z27.
K has 18 2-simplices and so C2(K) ∼= Z18.
All other chain groups of K are trivial and so Hi(K) ∼= 0 for i < 0 and for
i > 2.
(a) H0(K) ∼= Z since K is a connected simplicial complex.
(b) Calculation of H1(K).
Step 1. Finding an expression for Z1(K).
Suppose that x ∈ C1(K). Then x ∼ x′ where x′ involves only edges cor-
responding the edges on the perimeter of the template and 〈v1, v6〉, 〈v1, v8〉
and 〈v7, v9〉, say.
To see this observe that all other edges can be eliminated by working through
the 2-simplices in turn. For example, d2(〈v1, v2, v4〉) = 〈v2, v4〉 − 〈v1, v4〉 +
〈v1, v2〉 ∈ B1(K) and so 〈v2, v4〉 ∼ 〈v1, v4〉 − 〈v1, v2〉. In this way eighteen
edges can be eliminated leaving nine others.
However, from Proposition 4.32, d1(x) = 0⇔ d1(x

′) = 0 and so in this case
the coefficients of 〈v1, v6〉, 〈v1, v8〉 and 〈v7, v9〉 must be zero.
Thus, if x ∈ Z1(K), then x ∼ x′ ∈ Z1(K) where

x′ = λ1〈v1, v2〉+ λ2〈v1, v3〉+ λ3〈v1, v4〉+ λ4〈v1, v7〉+ λ5〈v2, v3〉+ λ6〈v4, v7〉.

d1(x
′) = −(λ1+λ2+λ3+λ4)〈v1〉+(λ1−λ5)〈v2〉+(λ2+λ5)〈v3〉+(λ3−λ6)〈v4〉+(λ4+λ6)〈v7〉

and so, since d1(x
′) = 0, λ1 = −λ2 − λ5 and λ3 = −λ4 = λ6.

Thus x ∈ Z1(K) implies that x ∼ x′ ∈ V , the subgroup generated by

x1 = 〈v1, v2〉+ 〈v2, v3〉 − 〈v1, v3〉

and
x2 = 〈v1, v4〉+ 〈v4, v7〉 − 〈v1, v7〉

Hence Z1(K) = V +B1(K).
Step 2. Find V ∩B1(K).
Suppose that y ∈ C2(K) and d2(y) ∈ V . Then d2(y) involves no edges
corresponding to the internal edges of the template which means that these
edges must cancel out. Hence y is a multiple of the 2-chain

z = 〈v1, v2, v4〉 − 〈v2, v4, v5〉+ 〈v2, v3, v5〉+ · · ·
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the sum of all of the 2-simplices oriented clockwise.
But d2(z) = x1 + x2 − x1 − x2 = 0.
Hence V ∩B1(K) = 0.
Step 3. Use the Second Isomorphism Theorem (Proposition G.10) to calcu-
late H1(K) as follows.

H1(K) = Z1(K)/B1(K) =
(
V+B1(K)

)
/B1(K) ∼= V/

(
V ∩B1(K)

) ∼= V/0 = V.

Thus H1(K) ∼= V ∼= Z2 generated by [x1] and [x2].
(c) Calculation of H2(K).
If y ∈ C2(K) and d2(y) = 0 then, as above y is a multiple of z. However,
d2(z) = 0. Hence Z2(K) ∼= Z generated by z.
B2(K) = 0 since C3(K) = 0.
Hence H2(K) = Z2(K) ∼= Z generated by z.

Conclusion. Hi(K) =


Z for i = 0,
Z2 for i = 1,
Z for i = 2,
0 otherwise.

4.34.1 Example. Let K be the simplicial complex corresponding to the
simplicial surface in Example 2.8(c) so that |K| ∼= P2, the Klein bottle.
By a similar argument to Example 4.33, Z1(K) = B1(K) + V where V is
the free abelian group generated by

x1 = 〈v1, v2〉+ 〈v2, v3〉 − 〈v1, v3〉

and
x2 = 〈v1, v4〉+ 〈v4, v7〉 − 〈v1, v7〉.

Now to find V ∩ B1(K), if y ∈ C2(K) such that d2(y) ∈ V the the edges
corresponding to the internal edges of the template must cancel out and so
y must be a multiple of the 2-chain

z = 〈v1, v2, v4〉+ 〈v2, v5, v4〉+ · · ·

the sum of all of the 2-simplices oriented clockwise.
But d2(z) = x1− x2− x1− x2 = −2x2. Hence V ∩B1(K) ∼= Z generated by
2x2.
Thus

H1(K) = Z1(K)/B1(K) =
(
V +B1(K)

)
/B1(K) ∼= V/

(
V ∩B1(K)

) ∼= Z×Z2

generated by [x1] and [x2], since the kernel of the homomorphism f : V →
Z × Z2 given by λ1x1 + λ2x2 7→ (λ1, [λ2]2) is generated by 2x2 and so is
V ∩B1(K).
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For H2(K) notice that, by the above argument, if y ∈ Z2(K) then, all of the
edges corresponding to the internal edges of the template must cancel out
and so y is a multiple of z. But d2(z) 6= 0 and so Z2(K) = 0 which means
that H2(K) = 0.

Conclusion. Hi(K) =


Z for i = 0,
Z× Z2 for i = 1,
0 otherwise.

4.34.2 Example. Let K be the simplicial complex corresponding to the
simplicial surface in Example 2.8(d) so that |K| ∼= P 2. Then

Hi(K) =


Z for i = 0,
Z2 for i = 1,
0 otherwise.

(Exercise)

Relationship with the Euler characteristic

4.35 Definition. The rth Betti number. βr(K) of a simplicial complex K
is the rank of Hr(K) (see Theorem G.14).

Remark. Note, that βr(K) = 0 does not imply, that Hr(K) is trivial,
since the group might be a product of finite cyclic groups as it was the case
for the projective plane and the Klein bottle.

4.36 Definition. The Euler characteristic of an n-dimensional simplicial
complex K is given by χ(K) =

∑n
r=0(−1)rnr where nr is the number of

r-simplices.

4.37 Theorem [the Euler-Poincaré Theorem]. For a simplicial com-
plex K of dimension K,

χ(K) =

n∑
r=0

(−1)rβr(K).

4.38 Remarks. (a) This shows that the homology groups determine the
Euler characteristic. We can also show (see Problems 5) that a simplicial
surface K is orientable if and only if H2(K̄) = Z and is non-orientable if
and only if H2(K̄) = 0 and so the notion of orientability of a surface is
also captured by the homology groups. The the homology groups are a real
generalization of the two invariants of surfaces used in §3. If we can prove
that the homology groups are topological invariants then it will follow that
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the Euler characteristic and whether a surface is orientable are topological
invariants.

(b) The proof of Theorem 4.37 makes use of some notions relating to abelian
groups which are of fundamental importance in algebraic topology and are
summarized in the background notes. The key idea is that of exact sequence
(Definition G.4).

Proof of Theorem 4.37. Recall that for a simplicial complex K,

Br−1(K) = Im(dr : Cr(K)→ Cr−1(K))

and
Zr(K) = Ker(dr : Cr(K)→ Cr−1(K)).

Thus we have a short exact sequences

0→ Zr(K)
i−→Cr(K)

dr−→Br−1(K)→ 0. (1)

Furthermore, Hr(K) = Zr(K)/Br(K) by definition and so we have se-
quences

0→ Br(K)→ Zr(K)→ Hr(K)→ 0. (2)

Finally, Cr(K) is the free abelian group on the r-simplices and so has rank
nr, the number of r-simplices.
We now apply Theorem G.14.
From short exact sequence (1) we deduce that

nr = rankZr(K) + rankBr−1(K). (3)

And from short exact sequence (2) we deduce that

rankZr(K)− rankBr(K) = βr(K). (4)

Hence,

χ(K) =
n∑
r=0

(−1)rnr by definition

=
n∑
r=0

(−1)r
(
rankZr(K) + rankBr−1(K)

)
by (3)

=

n∑
r=0

(−1)rrankZr(K) +

n∑
r=0

(−1)rrankBr−1(K)

=

n∑
r=0

(−1)rrankZr(K)−
n∑
r=0

(−1)rrankBr(K) since Br(K) = 0 for r = −1, n

=

n∑
r=0

(−1)r
(
rankZr(K)− rankBr(K)

)
=

n∑
r=0

(−1)rβr(K) by (4).
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