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5 Simplicial Maps, Simplicial Approximations and
the Invariance of Homology

Simplicial maps

5.1 Definition. Let K and L be simplicial complexes. Then an admis-
sible vertex map from K to L is a function φ : V (K) → V (L) such that, if
{ v0, v1, . . . , vr } is a simplex of K, then {φ(v0), φ(v1), . . . , φ(vr) } is a sim-
plex of L.

Note. φ need not be an injection and so the simplex {φ(v0), φ(v1), . . . , φ(vr) }
may contain repeated vertices in which case it is a simplex of dimension less
than r.

5.2 Proposition. An admissible vertex map φ from K to L induces a
continuous map of the underlying spaces

|φ| : |K| → |L|

by linear extension of the vertex map

|φ|
( r∑
i=0

tivi

)
=

r∑
i=0

tiφ(vi).

Proof. The function |φ| is well-defined and continuous by the Gluing Lemma
since the simplices are closed subsets of |K|.

5.3 Definition. A continuous function f : |K| → |L| between the under-
lying spaces of two simplicial complexes is a simplicial map (with respect to
K and L) if f = |φ| for an admissible vertex map from K to L.

5.4 Proposition. Suppose that φ : V (K)→ V (L) is an admissible vertex
map from a simplicial complex K to a simplicial complex L. Then φ induces
homomorphisms

φ∗ : Cr(K)→ Cr(L)

defined on generators by

φ∗(〈v0, v1, . . . , vr〉) =


〈φ(v0), φ(v1), . . . , φ(vr)〉 if the vertices φ(vi)

are all distinct,
0 otherwise.
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The homomorphisms φ∗ commute with the boundary homomorphisms as
follows.

Cr(K)
φ∗ //

dr
��

Cr(L)

dr
��

Cr−1(K)
φ∗ // Cr−1(L)

(1)

Hence, φ∗ induces homomorphisms φ∗ : Zr(K) → Zr(L) and φ∗ : Br(K) →
Br(L) and so homomorphisms

φ∗ : Hr(K)→ Hr(L).

Proof. To check the commutativity of the diagram we evaluate dr ◦ φ∗
and φ∗ ◦ dr on the generators. On an r-simplex who vertices are mapped
injectively, the check is a routine calculation. In other cases φ∗ maps
the simplex to 0. If the (r + 1) vertices of an r-simplex are mapped to
fewer than r vertices this means all of the faces of the simplex are also
mapped to 0 and so commutativity is immediate. If the (r + 1) vertices
of an r-simplex in K are mapped to r vertices, order the vertices so that
φ(v0) = φ(v1). Then all the (r−1)-faces of the simplex are mapped by φ∗ to 0
except that 〈v0, v2, . . . , vr〉 7→ 〈φ(v0), φ(v2), . . . , φ(vr)〉 and 〈v1, v2, . . . , vr〉 7→
〈φ(v1), φ(v2), . . . , φ(vr)〉. When φ∗ ◦ dr is evaluated on this r-simplex these
two terms cancel out giving 0, the same result as evaluating dr ◦ φ∗.
To see that φ∗ induces maps as described:

x ∈ Zr(K)⇒ dr(x) = 0⇒ drφ∗(x) = φ∗dr(x) = φ∗(0) = 0⇒ dr(x) ∈ Zr(L);

x ∈ Br(K)⇒ x = dr+1(x
′)⇒ φ∗(x) = φ∗dr+1(x

′) = dr+1φ∗(x
′)⇒ φ∗(x) ∈ Br(L).

Now we can define φ∗ : Hr(K) = Zr(K)/Br(L)⇒ Hr(L) = Zr(L)/Br(L) by

φ∗(Br(K) + x) = Br(L) + φ∗(x).

5.5 Definition. A family of homomorphism φ∗ : Cr(K) → Cr(L) as in
the proposition, i.e. making the diagrams in (2) commutative, is called a
chain map. The proof shows that even more general chain maps induce
homomorphisms of homology groups.

5.6 Remark. Thus a simplicial map |K| → |L| between the underlying
spaces of two simplicial complexes induces a homomorphism of the homology
groups. The difficulty with this is that most continuous maps |K| → |L| are
not simplicial maps and there are very few simplicial maps, certainly only
finitely many, whereas the number of continuous maps is uncountable in
most cases. In order to permit the construction of more simplicial maps
we subdivide the simplices along the lines of Definition 3.13. This still will
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not enable us to make all continuous maps simplicial but it will allow us
to approximate all continuous functions |K| → |L| by simplicial maps. We
first look at the approximation method.

Homotopic maps and homotopy equivalent spaces

5.7 Definition. Two continuous functions of topological spaces f0 : X →
Y and f1 : X → Y are homotopic, written f0 ' f1, if there is a continuous
map H : X × I → Y such that H(x, 0) = f0(x) and H(x, 1) = f1(x). We
call H a homotopy between f0 and f1 and write H : f0 ' f1 : X → Y .

5.8 Remark. (a) If H : f0 ' f1 : X → Y then there is a ‘continuous
family’ of continous functions ft : X → Y between f0 and f1 given by ft(x) =
H(x, t).

(b) If A is a subspace of X and f0, f1 : X → Y are two functions which agree
on A: f0(a) = f1(a) for a ∈ A then we say that f0 and f1 are homotopic
relative to A, written f0 ' f1 rel A, if there is a homotopy H : f0 ' f1 such
that H(a, t) = f0(a) for all a ∈ A.
A particular case of this is when X = I and A = {0, 1}. Then continuous
functions σ0, σ1 : I → Y such that σ(0) = σ1(0) = y0 and σ0(1) = σ1(1) = y1
(i.e. two paths in Y from y0 to y1) are homotopic relative to {0, 1} when
they are equivalent paths.

5.9 Proposition. Homotopy is an equivalence relation on the set of all
continuous functions from a topological space X to a topological space Y :

(i) f ' f : X → Y ;

(ii) f0 ' f1 : X → Y ⇒ f1 ' f0 : X → Y ;

(iii) f0 ' f1 : X → Y and f1 ' f2 : X → Y ⇒ f0 ' f2 : X → Y .

Proof. Exercise.

5.10 Definition. A continuous function f : X → Y is a homotopy equiv-
alence when there it has a homotopy inverse g : Y → X which means that
g ◦ f ' I : X → X, the identity map, and f ◦ g ' I : Y → Y . In this case
we say that X and Y are homotopy equivalent spaces and denote this by
X ≡ Y (or sometimes X ' Y ).

Notice that a homeomorphism is trivially a homotopy equivalence.

5.11 Definition. If a topological space X is homotopy equivalent to a
one-point space then it is said to be contractible.

5.12 Definition. A subspace A of a topological space X is said to be
a deformation retract when there is a retract r : X → A (i.e. a continuous
function such that r(a) = a for all a ∈ A) such that i ◦ r ' I : X → X.
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This is the most common way of constructing a homotopy equivalence.

5.13 Example. (a) Rn is contractible since if we consider the inclusion map
i : {0} → Rn and the constant map c : Rn → {0} then c ◦ i = I : {0} → {0}
and a homotopy H : i ◦ c ' I : Rn → Rn is defined by H(x, t) = tx. So {0}
is a deformation retract of Rn.

(b) The (n − 1)-sphere Sn−1 is homotopy equivalent to the punctured ball
Dn\{0}. For let i : Sn−1 → Dn\{0} be the inclusion map and r : Dn\{0} →
Sn−1 the radial projection map r(x) = x/|x|. Then r ◦ i = I : Sn−1 → Sn−1

and a homotopy H : i ◦ r ' I : Dn \ {0} → Dn \ {0} is given by H(x, t) =
(1− t)x/|x|+ tx. So Sn−1 is a deformation retract of Dn \ {0}.

5.14 Proposition. (a) If a topological space X is contractible then it is
path-connected.

(b) If a topological space is X is contractible then, for every point x0 ∈ X,
{x0} is a deformation retract of X.

Proof. Exercise.

Barycentric subdivisions and the simplicial approximation the-
orem

5.15 Definition. Suppose that f : |K| → |L| is a continuous function
between the underlying spaces of two simplicial complexes K and L.
Notice that, for each point y ∈ |L|, y is an interior point of a unique simplex
σ ∈ L. This simplex is called the carrier of y and is denoted carrL(y) (with
respect to L)
A simplicial map |φ| : |K| → |L| is a simplicial approximation to f (with
respect to K and L) if, for each point x ∈ |K| the image |φ|(x) lies in the
carrier of f(x).

5.16 Remark. One can check that the composition of simplicial approxi-
mations of f : |K| → |L| and g : |L| → |M |, respectively, gives a simplicial
approximation of g ◦ f .

5.17 Proposition. If the simplicial map |φ| : |K| → |L| is a simplicial
approximation to the continuous function f : |K| → |Y | then |φ| ' f : |K| →
|L|.

Proof. Define H : |K| × I → |L| by H(x, t) = (1 − t)|φ|(x) + tf(x) ∈ |L|.
This definition makes sense since both of |φ|(x) and f(x) lie in the carrier
of f(x) which is a convex subset of Euclidean space. The function is clearly
continuous by the algebra of continuous functions.

5.18 Example. Not every function f : |K| → |L| has a simplicial approx-
imation with respect to a given K and L. Consider the continuous function
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f : [0, 1] → [0, 1] given by f(x) = x2. Let K be the simplicial complex in
R with simplices 〈0, 1/2〉 and 〈1/2, 1〉 and their faces so that |K| = [0, 1].
Then f does not have a simplicial approximation |φ| : |K| → |K|.
To prove this suppose that φ : V (K) → V (K) is an admissible vertex map
so that |φ| is a simplicial approximation to f . Since f(0) = 0, the carrier of
f(0) is the vertex 〈0〉 and so |φ(0)| ∈ 〈0〉, i.e. φ(0) = 0.
Similarly, φ(1) = 1 since f(1) = 1.
This means, for φ to be admissible we must have φ(1/2) = 1/2 (since, for
example, if φ(1/2) = 0 then 〈1/2, 1〉 is a simplex in K but 〈φ(1/2), φ(1)〉 =
〈0, 1〉 is not a simplex in K, and similarly, φ(1/2) = 1 is not possible). Thus
|φ| = I : |K| → |K|, the identity map,
But the identity map is not a simplicial approximation to f since, for ex-
ample, if x = 2/3, then f(2/3) = 4/9 which has the carrier 〈0, 1/2〉 whereas
|φ|(2/3) = 2/3 does not lie in this simplex.

5.19 Definition. Recall from Proposition 4.9 that the coefficients (t0, t1, . . . , tk)
of a point x =

∑k
i=0 tivi ∈ 〈v0, v1, . . . , vk〉 are called the barycentric coordi-

nates of x.
The barycentre σ̂ of a k-simplex σ (k > 0) is the point (

∑k
i=0 vi)/(k + 1),

the ‘centre of mass’ of the vertices with barycentric coordinates
(
1/(k +

1), 1/(k + 1), . . . , 1/(k + 1)
)
.

Given a simplicial complex K, the first barycentric subdivision of K, de-
noted K ′, is a simplicial complex. The vertices of K ′ are the barycentres
of the (non-empty) simplices of K. The k-simplices of K ′ are given by
〈σ̂0, σ̂1, . . . σ̂k〉 where, for each i, 1 6 i 6 k, σi−1 is a proper face of σi in K.

5.20 Example. Suppose that K is the simplicial complex in R2 which
could be pictured as follows.

v3

v1 v4

v2

v5

v6

The first barycentric subdivision is as follows.
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v3

v1 v4

v2

v5

v6

5.21 Proposition. Given a simplicial complex K, its first barycentric
subdivision K ′ is also a simplicial complex of the same dimension as K with
the following properties.

(a) Each simplex of K ′ is a subset of a simplex of K.

(b) |K ′| = |K|.

5.22 Definition. The mth barycentric subdivision K(m) of a simplicial
complex K is defined inductively by K(i+1) = (K(i))′ for i > 1.

The barycentric subdivision step can be further decomposed into simpler
operations, namely generalisations of the starring operations, which we have
seen before.

5.23 Definition. Choose a point v in the interior of some simplex τ =
〈v0, . . . , vr〉 of a simplicial complex K. The starring of K in v is defined to
be the simplicial complex K(v), whose set of simplices consists of

(a) simplices of K which do not have τ as a face

(b) simplices of the form 〈v, w0, . . . , ws〉, where
{w0, . . . , ws} is a subset of vertices of a simplex σ with τ ≺ σ and at
least on vertex of τ is not contained in {w0, . . . , ws} (i.e. in particular
s < r).

Now, the barycentric subdivision is obtained by, first starring in the barycen-
tres of n-simplices of K. The result will contain the original (n−1)-simplices
of K. In the second step we are starring in the barycentres of these and the
result will still contain the (n− 2)-simplices of K, in whose barycentres we
are starring next, and so on. After starring in the barycentres of 1-simplices
(edges) the result is the barycentric subdivision.

5.24 Example (Example 5.18 continued). We might now consider
whether the function f(x) = x2 has a simplicial approximation |φ| : |K ′| →
|K|. K ′ has additional vertices at 1/4 and 3/4 and four edges 〈0, 1/4〉,
〈1/4, 1/2〉, 〈1/2, 3/4〉 and 〈3/4, 1〉.
To try and construct a simplicial approximation to f consider which sim-
plices in K are the carriers of f(x) for points x ∈ [0, 1]. As observed in 5.18,
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the carrier of f(0) = 0 is 〈0〉 and the carrier of f(1) = 1 is 〈1〉 so that, for
a simplicial approximation, we must have φ(0) = 0 and φ(1) = 1. It is also
true that f(1/

√
2) = 1/2 which has the carrier 〈1/2〉 and so |φ|(1/

√
2) = 1/2.

Since 1/
√

2 ∈ 〈1/2, 3/4〉 this means that 1/2 ∈ |φ|(〈1/2, 3/4〉).
This suggests trying the following admissible vertex map φ(0) = 0, φ(1/4) =
φ(1/2) = φ(3/4) = 1/2, φ(1) = 1 for which |φ|(〈1/2, 3/4〉) = 〈1/2〉. For this
admissible vertex map, |φ| : |K ′| → |L| is given by

|φ|(x) =


2x for 0 6 x 6 1/4,
1/2 for 1/4 6 x 6 3/4,
2x− 1 for 3/4 6 x 6 1.

You can now easily check that |φ| : |K ′| → |K| is a simplicial approximation
to f with respect to K ′ and K.

The following result gives a criterion for the existence of a simplicial ap-
proximation. For this we need the notion of a star. For a given simplicial
complex K we define the (open) star at a vertex v by

star(v) :=
⋃
v∈σ

σ◦.

5.25 Proposition. Let f : |K| → |L| be a continuous function between the
underlying spaces of simplicial complexes K and L. Assume that the image
of every star in K is contained in a star of L. Then there is a simplicial
approximation of f .

Proof. By the precondition for ever v ∈ V (K) there exists a vertex w ∈ V (L)
with f(star(v)) ⊂ star(w) ⊂ |L|. We define a vertex map φ : V (K)→ V (L)
by setting φ(v) = w.
Now, given a point x in the interior of a simplex 〈v0, . . . , vr〉 of K. Then x
it is contained in

⋂r
i=0 star(vi) and, hence,

f(x) ∈ f

(
r⋂
i=0

star(vi)

)
⊂

r⋂
i=0

(star(φ(vi))

In particular,
⋂r
i=0(star(φ(vi)) is non-empty. All the stars are disjoint unions

of interiors of simplices. Hence, the intersection is also a disjoint union of
such interiors. If the interior of σ is contained in

⋂r
i=0(star(φ(vi)) then

φ(v0), . . . , φ(vr) have to be vertices of σ. On the one hand this implies that
〈φ(v0), . . . , φ(vr)〉 is a face of σ. In particular, 〈φ(v0), . . . , φ(vr)〉 is a simplex
of L. Hence, φ is admissible. On the other hand the carrier of every point
in
⋂r
i=0(star(φ(vi)) contains 〈φ(v0), . . . , φ(vr)〉 and hence also |φ|(x).

5.26 Theorem (The Simplicial Approximation Theorem). Let f : |K| →
|L| be a continuous function between the underlying spaces of simplicial
complexes K and L. Then, for sufficiently large m, there is a simplicial
approximation |φ| : |K| = |K(m)| → |L| to f with respect to K(m) and L.
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Proof. One observes that taking the m-th barycentric subdivision of a sim-
plicial complex of dimension d reduces the maximal diameter of a star by

the factor
(

d
d+1

)m
(Excercise). Now, {f−1(star(w))}w∈V (L) forms an open

covering of |K|. Hence, by the Lebesgue Number Lemma the condition of
Proposition 5.25 will be fulfilled for m� 0.

5.27 Proposition. Suppose that K(m) is obtained from K by repeated
barycentric subdivision, the there is an isomorphism of the simplicial ho-
mology groups χ∗ : Hr(K)→ Hr(K

(m)).

Outline proof. We indicate how the result is proved in the case m = 1 and
then the general result follows by induction on m.
We may define a homomorphism χr : Cr(K) → Cr(K

′) on generators by
mapping each r-simplex of K to the sum of the r-simplices of K ′ into which
it is divided (oriented compatibly). For example, if σ = 〈v0, v1, v2〉 then the
first barycentric subdivision of this simplex is as follows.

u2

w

v2

v1

u0

v0

u1

Here, for example, w = ̂〈v0, v1, v2〉 and u0 = ̂〈v1, v2〉.
Then

χr(σ) = 〈v0, u2, w〉−〈v0, u1, w〉−〈v1, u2, w〉+〈v1, u0, w〉+〈v2, u1, w〉−〈v2, u0, w〉.

It can then be shown that the diagram

Cr(K)
χr //

dr
��

Cr(L)

dr
��

Cr−1(K)
χr−1 // Cr−1(L)

(2)

commutes and so (as in the proof of Proposition 5.4) induces homoomor-
phisms

χr : Zr(K)→ Zr(K
′),
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χr : Br(K)→ Br(K
′)

and so a homomorphism

χ∗ : Hr(K)→ Hr(K
′).

This homomorphism can be shown to be an isomorphism. Indeed, an inverse
comes from an admissible vertex map α, where α sends a barycenter σ̂ to
one chosen vertex of σ.

5.28 Remark. Note, that the simplicial map |α| : |K ′| → |K| in the proof
above is a simplicial approximation of the identity.

5.29 Theorem. Suppose that f : |K| → |L| is a continuous function be-
tween the underlying spaces of simplicial complexes. Then, by the Simplicial
Approximation Theorem, it has a simplicial approximation |φ| : |K(m)| →
|L| for some repeated barycentric subdivision of K. We define the induced
homomorphism

f∗ : Hr(K)→ Hr(L)

to be the composition

Hr(K)
χm
∗−→ Hr(K

(m))
φ∗−→ Hr(L).

This homomorphism is well-defined and does not depend on the choice of
simplicial approximation for f .

5.30 Theorem (Functorial Properties of Homology). (a) If f : |K| →
|K| is the identity map, then each hommorphism f∗ : Hr(K) → Hr(K) is
the identity homomorphism.

(b) Given continuous functions f : |K| → |L| and g : |L| → |M | between the
underlying spaces of simplicial complexes then (g ◦ f)∗ = g∗ ◦ f∗ : Hr(K)→
Hr(M) for all r.

5.31 Corollary. The homology groups are topological invariants.

Proof. Consider a homeomorphism f : |K| → |L|. Then functoriality implies
f∗ ◦ (f−1)∗ = (f ◦ f−1)∗ = (id|K|)∗ = idHk(|K|) and similarly f−1 ◦ f∗ =
idHk(|L|. Hence, (f−1)∗ is an inverse of f∗ and so Hk(|L|) ∼= Hk(|K|).

5.32 Definition. A simplicial complex K is called acyclic if it has the
same homology groups as a single vertex, i.e. Hk(K) ∼= Hk({v}).

5.33 Definition. A chain homotopy between chain maps ψk, φk : Ck(K)→
Ck(L) is a sequence of homomorophisms hk : Ck(K)→ Ck+1(L), such that

dk+1 ◦ hk + hk−1 ◦ dk = ψk − φk.

In this situation ψ∗ and φ∗ are called chain homotopic to each other.
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5.34 Lemma. Two chain homotopic maps ψk and φk induce the same
homomorphism on the homology.

Proof. For z ∈ Zk(K) we have

ψk(z)− φk(z) = dk+1(hk(z)) + hk−1(dk(z)) = dk+1(hk(z)) ∈ Bk(L).

Hence, ψ∗(z) and φ∗(z) are homologous and give rise to the same element
of homology.

5.35 Proposition. ∆̄r is acyclic.

Proof. Assume ∆r = 〈e0, . . . , er〉 and ∆r−1 = 〈e0, . . . , ek−1〉. Then we con-
sider the homomorphisms hk−1 : Ck−1(∆̄

r−1)→ Ck(∆̄
r) obtained by sending

〈ei0 , . . . , eik〉 with 0 6 ij 6 r− 1 to 〈ei0 , . . . , eik , er〉 and for k > 1 we obtain

dk+1(hk(σ)) = x− hk−1(dk(σ)) (3)

and for k = 0
d1(h0(σ)) = σ − 〈er〉. (4)

On the other hand, the k-simplices of ∆̄r either contain er and, hence, are of
the form hk−1(τ) with τ an (k−1)-simplex in ∆̄r−1 or they do not contain er
and, hence, are also k-simplex in ∆̄r−1. Hence, every chain z ∈ Ck(∆̄r) can
be written uniquely in the form z = x+hk−1(y) for k > 0 and z = x+λ ·〈vr〉
for k = 0. Assume dk(z) = 0. Then by (3) and (4) we have

(dk(x) + y)− hk−2(dk−1(y)) = 0, or (dk(x) + y)− λ〈vr〉 = 0.

Because of the uniqueness of the decompositions we have dk(x) + y = 0 in
both cases. From (3) we obtain

dk+1(hk(x)) = x− hk−1(dk(x)) = x+ hk−1(y) = z.

Hence, z is a boundary.

5.36 Proposition (on acyclic supports). Consider two simplicial maps
and the corresponding chain maps φk, ψk : Ck(K) → Ck(L). Suppose that
to every simplex σ ∈ K there is a subcomplex L(σ) ⊂ L such that

(a) if σ′ ⊂ σ then L(σ′) ⊂ L(σ);

(b) L(σ) is acyclic;

(c) For a k-simplex σ. The complex L(σ) contains the support of ψk(σ)
and φk(σ).

Then ψk and φk are chain homotopic.
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Proof. We construct a chain homotopy inductively. Suppose k = 0. Hence,
we consider a vertex v in K now L(v) contains u = ψ(v) and w = φ(v).
Since L(v) is acyclic it follows that L(v) is connected. Hence, there is a
path of (oriented) edges 〈u = u0, u1〉, 〈u1, u2〉 . . . , 〈u`−1, u` = w〉. Now we
set h0(v) =

∑`
i=1〈ui−1, ui〉.

Suppose we constructed h0, . . . , hk−1, such that for every i-simplex σ the
image hi(σ) is supported in L(σ). Consider a k-simplex σ ∈ K. Set ck =
ψk(σ) − φk(σ) − hk−1(dk(σ)). The we just have to find a chain hk(σ) such
that dk+1(hk(σ)) = ck. All simplices of dk(σ) are contained in σ. Hence,
hk−1(dk(σ)) is supported in L(σ). Thus L(σ) is a support of ck.

dk(ck) = (dk ◦ ψk − dk ◦ φk − dk ◦ hk−1 ◦ dk)(σ)

= (dk ◦ ψk − dk ◦ φk − (ψk−1 ◦ dk − φk−1 ◦ dk − hk−2 ◦ dk−1 ◦ dk−2)(σ)

= 0

We see that ck is a cycle. Since, k > 0 and L(σ) is acyclic we must have
Hk(L(σ)) = 0. Hence, ck is also a boundary and there must be some element
hk(σ) with dk(hk(σ)) = ck.

Proof of Theorem 5.29. We have to show that the induced homomorphisms
φ∗ ◦ χm∗ = ψ∗ ◦ χn∗ for two simplicial approximations φ and ψ of f . Let us
first assume, that m = n. Now, for a simplex σ = 〈v0, . . . , vr〉. Consider x
in the interior of σ. Then 〈ψ(v0), . . . , ψ(vr)〉 and 〈φ(v0), . . . , φ(vr)〉 are both
contained in the carrier ∆ of f(x), since by the definition of a simplicial
approximation we have |ψ|(x), |φ|(x) ∈ ∆. Since ∆̄ is acyclic we see that
the chain maps ψ∗ = φ∗ by Proposition 5.36.
Let us now assume n > m. We may replace K by K(m) and n by p = n−m.
Then we have to prove φ∗ = ψ∗ ◦ χp∗. But this is equivalent to φ∗ ◦ αp∗ = ψ∗,
where α is the simplicial map, which sends σ̂ to one of the vertices of σ and
which on the level of homology gave rise to an inverse of χ∗. Now, since φ is
a simplicial approximation of f we have φ(carrK(x)) ⊂ carrL(f(x)). Note,
that α sends the carrier of x in K ′ to the carrier of x in K. By induction
the same is true for αp. Hence, φ ◦ αp(carrK(p)(x)) ⊂ carrL(f(x)) and
φ◦αp is another simplicial approximation from |K(m)| → |L| (as ψ). Hence,
φ∗ ◦ αp∗ = ψ∗ for the induced homomorphisms on Hr(K

(m))→ Hr(L).

5.37 Theorem. If f0 ' f1 : |K| → |M | are homotopic functions between
the underlying spaces of simplicial complexes then (f0)∗ = (f1)∗ : Hr(K)→
Hr(M) for all r.

Proof. Assume H : |K| × I → |M | is a homotopy between f0 and f1, i.e.
H(x, i) = fi(x) for i = 0, 1. Note, that there is an natural triangulation L
of |K| × I, which contains K × {0} and K × {1} as subcomplexes.

{〈(v0, 0), . . . , (vi, 0), (vi+1, 1) . . . (vr, 1)〉 | 〈v0 . . . , vr〉 ∈ K}
∪{〈(v0, 0), . . . , (vi, 0), (vi, 1)(vi+1, 1) . . . (vr, 1)〉 | 〈v0 . . . , vr〉 ∈ K}
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We have the simplicial inclusion maps

i0 : |K| → |K| × {0} ⊂ |L|, i1 : |K| → |K| × {1} ⊂ |L|.

For σ ∈ K consider the subcomplex L(σ) ⊂ L with |L(σ)| = σ × I. Then

i0(σ) = σ × {0} ⊂ L(σ) ⊃ σ × {0} = i1(σ).

Moreover, for every r-simplex σ the subcomplex L(σ) is acyclic, since |L(σ)| =
σ × I ∼= ∆k. Hence, by Proposition 5.36 (i0)∗ = (i1)∗ and consequently

(f0)∗ = (H ◦ i0)∗ = H∗ ◦ (i0)∗ = H∗ ◦ (i1)∗ = (H ◦ i1)∗ = (f1)∗.

5.38 Corollary. The homology groups are a homotopy invariant, i.e. if
f : |K| → |L| is a homotopy equivalence of the underlying spaces of two
simplicial complexes then f∗ : Hr(K)→ Hr(L) is an isomorphism for all r.

Proof. Suppose that g : |L| → |K| is a homotopy inverse for f . Then

g∗ ◦ f∗ = (g ◦ f)∗ by 5.30(a) = (id|K|)∗ by 5.37 = idHr(K) by 5.30(b)

and similarly f∗◦g∗ = idHr(L). Hence f∗ : Hr(K)→ Hr(L) is an isomorphism
for each r with inverse g∗.

5.39 Definition. If a topological space X is homotopy equivalent to the
underlying space of a simplicial complex |K| we may define the homology
groups of X by Hr(X) = Hr(K).
Notice that these groups are well-defined up to isomorphism since, if h : |K| →
X and k : |L| → X are two homotopy equivalences from the underlying
spaces of simplicial ocmplexes K and L, then k−1 ◦ h : |K| → |L| is a homo-
topy equivalence and so, by Corollary 5.38, induces isomorphism Hr(K)→
Hr(L) for all r.

Homology of spheres and degree of selfmaps on spheres

5.40 Theorem. The homology groups of the n-sphere Sn for n > 1 are
given by

Hr(S
n) ∼=

{
Z for r = 0 and r = n,
0 otherwise.

To prove this first of all notice the following result.

5.41 Proposition. If the underlying space |K| of a simplicial complex K
is contractible then

Hr(K) ∼=
{

Z for r = 0,
0 otherwise.
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Proof. First all notice that if K is the simplicial complex consisting of one
vertex and no other non-empty simplices than this has the homology groups
stated in the proposition since C0(K) ∼= Z but all the other chain groups
are trivial and so all of the boundary homomorphisms are trivial.
The result now follows from Corollary 5.38.

Proof of Theorem 5.40. First of all notice that since ∆n+1 is a convex subset
of Rn+2 it is contractible [Exercise]. Hence the homology groups of the
simplicial complex ∆̄n+1 are given by Proposition 5.41.
Now recall that the underlying space of the n-skeleton K = (∆̄n+1)[n] is
homeomorphic to Sn (Example 4.8(c)).
Since K is n-dimensional it has trivial homology groups in dimensions above
n. In dimensions 0 6 r 6 n, Cr(K) = Cr(∆̄

n+1) with the same boundary
homomorphims between these groups. Hence in dimensions 0 6 r 6 n− 1,
Hr(K) = Hr(∆̄

n+1). However, in dimension n, Bn(K) = 0 since Cn+1(K) =
0 and so Hn(K) = Zn(K) a free group of rank βn(K), the nth Betti number
of K.
By Problems 4, Question 5(ii), the Euler characteristic of K is given by
χ(K) = 1 + (−1)n. But β0(K) = 1 and βr(K) = 0 for all r 6= 0 and
n since the homology groups are trivial in these dimensions. Hence, by
Theorem 4.37, βn(K) = 1. Hence Hn(K) ∼= Z as required to complete the
proof.

5.42 Definition. Suppose that h : |K| → Sn is a triangulation of the n-
sphere (for example K = (∆̄n+1)[n]. Given a continuous function f : Sn →
Sn then this induces a continuous function h−1 ◦ f ◦ h : |K| → |K| which in
turn induces a homomorphism (h−1 ◦ f ◦h)∗ : Hn(K)→ Hn(K) which must
be given by [z] 7→ λ[z] for λ ∈ Z since Hn(K) ∼= Z. The integer λ ∈ Z is
called the degree of the continuous function f denoted deg(f).

5.43 Proposition. The degree of a continuous function f : Sn → Sn is
well-defined and does not depend on the choice of triangulation h : |K| → Sn.

Proof. Suppose that h : |K| → Sn is a triangulation of Sn and that using this
triangulation the degree of a continuous function f : Sn → Sn has degree
deg(f) = λ.
Suppose that k : |L| → Sn is a second triangulation of Sn. Then g =
h−1 ◦ k : |L| → |K| is a homeomorphism and so induces an isomorphism
g∗ : Hn(L)→ Hn(K).
Now for [w] ∈ Hn(L), using the following commutative diagram,

|K| h // Sn
f
// Sn

h−1
// |K|

|L|

g

OO

k // Sn
f //

id

OO

Sn

id

OO

k−1
// |L|

g

OO
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(k−1 ◦ f ◦ k)∗([w]) = (g−1 ◦ h−1 ◦ f ◦ h ◦ g)∗([w])

=
(
(g−1)∗ ◦ (h−1 ◦ f ◦ h)∗ ◦ g∗

)
([w])

= (g−1)∗
(
(h−1 ◦ f ◦ h)∗

(
g∗([w])

))
= (g−1)∗

(
λg∗([w])

)
= λ(g−1)∗ ◦ g∗([w])

= λ[w]

showing that using that using k in place of h gives the same value for the
degree.

5.44 Proposition.

(a) f ' g : Sn → Sn ⇒ deg(f) = deg(g).

(b) The identity function I : Sn → Sn has degree 1.

(c) A constant function c : Sn → Sn has degree 0,

Proof. (a) This follows from Theorem 5.37

(b) This follows from Theorem 5.30(a).

(c) A constant function c : Sn → Sn factors through a one-point space
{a}: Sn → {a} → Sn and so, given a triangulation h : |K| → Sn, the
homomorphism of Hn induced by h−1 ◦ f ◦ h : |K| → |K|, by Theo-
rem 5.29, factors through Hn({a}) = 0 by Proposition 5.41. Hence
(h−1 ◦ f ◦ h)∗([z]) = 0 giving the result.

5.45 Example. We want to calculcate the degree of f : S1 → S1 ⊂ C given
by f(z) = z2. We consider the triangulation K and simplicial approximation
g from Problems 6 Question 4 which lives on K ′. Note, that a generator of
Hn(K) is given by z = [〈v0, v1〉+ 〈v1, v2〉+ 〈v2, v0〉]. Then we have

χ∗([z]) = [〈v0, w0〉+ 〈w0, v1〉+ 〈v1, w1〉+ 〈w1, v2〉+ 〈v2, w2〉+ 〈w2, v0〉]

Now,

f∗([z] = g∗(χ∗([z])) = [〈v0, v1〉+〈v1, v2〉+〈v2, v0〉+〈v0, v1〉+〈v1, v2〉+〈v2, v0〉] = 2[z].

Hence, deg(f) = 2.

5.46 Proposition. The antipodal map τ : Sn → Sn given by τ(x) = −x
has degree (−1)n+1.
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Proof. We first of all define a convenient triangulation of Sn.
For 1 6 i 6 n + 1, let vi = εi, the standard ith basis vector of Rn+1 and
v−i = −εi. Let

K = { 〈vi1 , vi2 , . . . , vir〉 | 1 6 |i1| < |i2| < . . . < |ir| 6 n+ 1, 0 6 r 6 n+ 1 }.

Then K is a simplicial complex and |K| = {x ∈ Rn+1 |
∑n+1

i=1 |xi| = 1 }.
Radial projection gives a homeomorphism h : |K| → Sn.
A generator for Hn(K) = Zn(K) ∼= Z is given by

z = 〈v1, v2, . . . , vn+1〉−〈v−1, v2, . . . , vn+1〉+. . .+(−1)n+1〈v−1, v−2, . . . , v−(n+1)〉

where the coefficient is (−1)r if there are r vertices of the form v−i.
Let τ : Sn → Sn be the antipodal function τ(x) = −x. Then h−1 ◦ τ ◦
h : |K| → |K| is a simplicial map coming from the admissible vertex map
φ(vi) = v−i, φ(v−i) = vi.
But then φ∗(z) = (−1)n+1z. Hence by the definition of degree deg(τ) =
(−1)n+1.
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