
Autumn Semester 2017–2018
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Abelian Groups

G.1 Definition. An abelian group is a non-empty set A together with a
binary operation

+: A×A→ A (a1, a2) 7→ a1 + a2

such that

(i) + is associative and commutative,

(ii) there is a (necessarily unique) element 0 ∈ A such that a + 0 = a for
all a ∈ A,

(iii) given a ∈ A there is a (necessarily unique) element −a ∈ A such that
a+ (−a) = 0.

G.2 Examples (a) Z, the integers with the usual addition.

(b) Zn = { 0, 1, 2, . . . , n− 1 }, with addition modulo n.

(c) 0 = { 0 }, the trivial group.

(d) If A1 and A2 are abelian groups then so is A1 ×A2 by

(a1, a2) + (a′1, a
′
2) = (a1 + a′1, a2 + a′2).

This is called the direct sum of the groups (and is sometimes denoted A1 ⊕
A2).

G.3 Definition. If A and B are abelian groups, a function f : A → B is
a homomorphism if

f(a1 + a2) = f(a1) + f(a2) for all a1, a2 ∈ A.

It follows that f(0) = 0 and f(−a) = −f(a).

The kernel of f is given by Ker(f) = { a ∈ A | f(a) = 0 }.
The image of f is given by Im(f) = f(A) = { f(a) | a ∈ A }.
These are examples of subgroups, i.e. subsets of a group which are them-

selves groups under the same binary operation.

If Ker(f) = 0, then f is a monomorphism (and this holds if and only if
a homomrphism f is an injection).

If Im(f) = B, then f is an epimorphism.
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If f is both a monomorphism and an epimorphism then it is an isomor-
phism (and this occurs if and only if a homomorphism f is a bijection). In
this case the inverse map f−1 : B → A is also an isomorphism. If such an f
exists then we say that A and B are isomorphic and write A ∼= B.

G.4 Definition. If f : A → B and g : B → C are homomorphisms then
we say that the sequence

A
f→ B

g→ C

is exact (at B) when Im(f) = Ker(g). This means that g ◦f = 0 (equivalent
to Im(f) ⊂ Ker(g) and if g(b) = 0 then b = f(a) for some a ∈ A (equivalent
to Im(f) ⊃ Ker(g)).

G.5 Examples. (a) 0 → A
f→ B is exact if and only if f is a monomor-

phism.

A
f→ B → 0 is exact if and only if f is an epimorphism.

0 → A
f→ B → 0 is exact if and only if f is an isomorphism. Notice that

exactness of this sequence means that it is exact at both A and B.

(b) 0 → A1
f→ A1 × A2

g→ A2 → 0 is exact where f(a1) = (a1, 0),
g(a1, a2) = a2.

(c) 0→ Z f→ Z g→ Z2 → 0 is exact where f(n) = 2n and g(n) = n (reduction
modulo 2).

(d) A short exact sequence is an exact sequence of the form

0→ A→ B → C → 0

which means that the seqence is exact at A, B and C. Examples (b) and
(c) are short exact sequences.

(e) Given any homomorphism f : A→ B, the sequence

0→ Ker(f)
i→ A

f→ Im(f)→ 0

is short exact where i is the inclusion map.

G.6 Definition. Given a subgroup B of a group A we may define an
equivalence relation on A by a1 ∼ a2 ⇔ a1 − a2 ∈ B. The equivalence
classes of this relation are called the cosets of B in A.

Notice that the coset of an an element a0 ∈ A is given by [a] = { a ∈ A |
a− a0 ∈ B } = { b+ a0 | b ∈ B } = B + a0.
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The set of cosets of B in A is denoted A/B and may be made into an
abelian group by the operation

(B + a1) + (B + a2) = B + (a1 + a2).

With this structure B/A is called the quotient group.

G.7 Example. If A = Z and B = 2Z = { 2n | n ∈ Z } then A/B = Z/2Z
has two elements: the set of even integers 2Z and the set of odd integers
2Z + 1. Clearly Z/2Z ∼= Z2 with the isomorphism 2Z 7→ 0, 2Z + 1 7→ 1.

G.8 Proposition. If 0→ A
f→ B

g→ C → 0 is short exact, then g induces
an isomorphism

g : B/f(A)→ C

by g(f(A) + b) = g(b).

Proof. Exercise. �

Applying this result to the short exact sequence of Example G.5(e) gives
an important result.

G.9 Corollary [The first isomorphism theorem]. Given any homo-
morphism f : A→ B, f induces an isomorphism

f : A/Kerf → Imf

by f(Kerf + a) = f(a).

Another result concerning isomorphic quotient groups is useful in the
calculation of simplicial homology groups.

G.10 Proposition [The second isomorphism theorem]. If B and C
are subgroups of an abelian group A, then the inclusion map B → B + C
induces an isomorphism

B/(B ∩ C) ∼= (B + C)/C.

(Here B + C = { b+ c | b ∈ B, c ∈ C }.

Proof. Exercise. �
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G.11 Definition. An abelian group A is finitely generated if there is a
finite set of elements a1, a2, . . . , ar ∈ A such that every element a ∈ A can
be expressed in the form a =

∑
niai for ni ∈ Z.

If r = 1 and there is a single generator then A is cyclic and either A ∼= Z
or A ∼= Zn for some n (the least positive integer such that na = 0 ∈ A, the
order of the element — see Definition G.13 below).

If
∑
niai = 0 if and only if ni = 0 for all i then A is freely generated

by a1, a2 . . . ar and is free abelian. In this case it can be shown that the
number r is well-defined (cf. the dimension of a vector space); this number
is called the rank of A.

Given a free group A of rank r freely generated by a1, a2, . . . , ar, then a
homomorphism f : A→ B may be determined by assigning arbirary values
to f(a1), f(a2), . . . f(ar), for f(

∑
niai) =

∑
nif(ai).

G.12 Proposition. A free group A freely generated by a1, a2, . . . , ar is
isomorphic to Zr; an isomorphism f : A→ Zr is given by f(ai) = ei.

Proof. Exercise. �

G.13 Definition. Given an abelian group A, an element a ∈ A is called
a torsion element if na = 0 ∈ A for some positive integer n. For a 6= 0, the
least such n is called the order of the element.

G.14 Proposition. Given an abelian group A, the subset of torsion el-
ement forms a subgroup T (A) called the torsion subgroup. The quotient
group A/T (A) is a free group. If A is finitely generated, then so is A/F (A).
The rank of A is defined to be the rank of A/F (A).

Proof. Exercise. �

G.15 Proposition. Zm × Zn ∼= Zmn if and only if m and n are coprime.
If m and n are coprime then there is an isomorphism Zm×Zn ∼= Zmn given
by (i, j) 7→ ni+mj.

Proof. Exercise. �

G.16 Theorem [Classification theorem for finitely generated abelian
groups]. Every finitely generated abelian group is isomophic to a unique
group of the form

Zr × Zλ1 × Zλ2 × · · · × Zλs
where r > 0, s > 0 and λi divides λi+1 for each i.
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Proof. Omitted. See for example B. Hartley and T.O. Hawkes, Rings,
modules and linear algebra, Chapman and Hall (1970), chapters 7 and 10.

�

G.17 Remark. An isomorphism A ∼= Zr×Zλ1×Zλ2×· · ·×Zλs restricts to
an isomorphism of the torsion subgroups T (A) ∼= {0}×Zλ1×Zλ2×· · ·×Zλs ∼=
Zλ1×Zλ2×· · ·×Zλs and induces an isomorphism A/T (A) ∼= Zr. So r is the
rank of A. The numbers λ1, λ2, . . . , λs are called the torsion coefficients of
A.

G.18 Theorem. If 0 → A → B → C → 0 is a short exact sequence of
finitely generated abelian groups then

rank(B) = rank(A) + rank(C).

Proof. Omitted. See for example P.J. Giblin, Graphs, surfaces and homol-
ogy, Chapman and Hall (1977) appendix on abelian groups. �
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