
Autumn Semester 2017–2018

MATH41071/MATH61071 Algebraic topology

§T. Background material: Topology

For convenience this is an overview of basic topological ideas which will
be used in the course. This material was covered in MATH31052 Topology
and more details can be found in the notes for that course.

Basic definitions

T.1 Definition. A set τ of subsets of a set X is a topology on X if it has
the following properties:

(i) the intersection of any finite set of elements of τ is in τ ;

(ii) the union of any set of elements of τ is in τ ;

(iii) ∅ ∈ τ and X ∈ τ .

A pair (X, τ) consisting of a set X and a topology τ on X is called a
topological space. We usually refer to ‘the space X’ when the topology is
clear.

The elements of τ are called the open sets of the topology.

T.2 Definition. Suppose that (X, τ1) and (Y, τ2) are topological spaces.
Then a function f : X → Y is continuous (with respect to the topologies τ1
and τ2) if

U ∈ τ2 ⇒ f−1(U) ∈ τ1,

i.e. the inverse image of each open set in Y is an open set in X.

T.3 Example. We may define a topology on Euclidean n-space Rn as
follows. A subset U ⊂ Rn is open if and only if, for each x0 ∈ U , there is
a positive ε > 0 such that Bε(x0) = {x ∈ Rn | |x − x0| < ε } ⊂ U . This is
called the usual topology on Rn.

T.4 Definition. A basis for a topology τ is a subset B of τ (i.e. a set of
open sets in the topology) such that each open set (element of τ) can be
expressed as a union of a collection of sets in B.

A topological space which has a countable basis is said to be second
countable.

1



T.5 Example. In Rn the set of all open balls with rational radii and
centres with rational coordinates is a basis for the usual (metric) topology
on Rn. Hence Rn with the usual topology is second countable.

This makes use of the fact that the set of rationals Q is a countable set
and the product of two countable sets is countable.

T.6 Definition. A subset A in a topological space X is closed if and only
if its complement X \A is open.

T.7 Proposition. A function f : X → Y between topological spaces is
continuous if and only if the inverse image of each closed set in Y is a closed
set in X.

T.8 Definition. Suppose that X and Y are topological spaces. A func-
tion f : X → Y is a homeomorphism (or topological equivalence) if it is a
continuous bijection with a continuous inverse. If such a homeomorphism
exists then we say that X and Y are homeomorphic and write X ∼= Y .

T.9 Proposition. A bijection f : X → Y of topological spaces is a home-
omorphism if and only if either of the following conditions hold:

(a) U is open in X if and only if f(U) is open in Y ;

(b) A is closed in X if and only if f(A) is closed in Y .

A sufficient condition for a continuous bijection to
be a homeomorphism

T.10 Definition. A topological space is Hausdorff if, for each pair of
distinct points x1 and x2 of X there are open sets U1 and U2 of X such that
x1 ∈ U1, x2 ∈ U2 and U1 ∩ U2 = ∅.

T.11 Proposition. Euclidean space Rn with the usual topology is Haus-
dorff.

T.12 Definition. A collection A is subsets of X is a covering for A ⊂ X
if
⋃

U∈A U ⊃ A. If A and B are coverings for A and B ⊂ A then B is a
subcovering of A. A covering A is finite if the number of subsets in A is
finite.

A subset A of a topological space X is compact if each covering of A by
open sets of X has a finite subcovering. Notice that X itself is a subset of
X and if it is compact we refer to X as a compact space.
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T.13 Theorem [Heine-Borel-Lebesgue]. A subset A in Rn is compact
if and only if it is closed and bounded.

T.14 Proposition. A closed subset of a compact space is compact.

T.15 Proposition. A compact subset of a Hausdorff space is closed.

T.16 Proposition. Suppose that f : X → Y is continuous and A is a
compact subset of X. Then f(A) is a compact subset of Y .

T.17 Theorem. Suppose that f : X → Y is a continuous bijection from
a compact space X to a Hausdorff space Y . Then f is a homeomorphism.

Proof. This is an easy corollary of the previous three results. To prove
that f is a homeomorphism, it is sufficient by Proposition T.9 to prove that
if A is closed in X then f(A) is closed in Y since f is a continuous bijec-
tion. However, since A is closed in X and X is compact it follows from
Proposition T.14 that A is compact. Therefore, by Proposition T.16, f(A)
is compact. It then follows, by Proposition T.15, that f(A) is closed in Y
as required, since Y is Hausdorff. �

Constructing new topological spaces

Subspaces

T.18 Definition. Suppose that (X, τ) is a topological space and X1 is a
subset of X. Then the subspace topology on X1 is given by V ⊂ X1 is open
in X1 if and only if V = U ∩X1 for some open set U in X. We call X1 with
the subspace topology a subspace of X.

T.19 Proposition [Universal property of the subspace topology].
Given a topology space X with a subspace X1 ⊂ X, the inclusion map
i : X1 → X is continuous and, given any map f : Y → X1 from a topological
space Y , f is continuous if and only if the composition i ◦ f : Y → X is
continuous.

T.20 Proposition [Gluing lemma]. Suppose that X1 and X2 are sub-
spaces of a topological space X such that X = X1∪X2 and both are closed in
X [or both are open inX]. Given continuous maps f1 : X1 → Y , f2 : X2 → Y
such that f1(x) = f2(x) for x ∈ X1 ∩ X2. Then the function f : X → Y
defined by f(x) = fi(x) for x ∈ Xi is well-defined and continuous.
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T.21 Proposition. A subspace of a Hausdorff space is Hausdorff.

T.22 Proposition. A subspace of a second countable topological space is
second countable.

T.23 Proposition. A subspace X1 of a topological space X is a compact
space if and only if X1 is a compact subset of X.

Product spaces

T.24 Definition. Suppose that X1 and X2 are topological spaces. The
product topology on the cartesian product X = X1×X2 is the topology with
a basis consisting of all sets of the form U1×U2 where Ui is open in Xi. We
call X1 × X2 with the product topology the product of the spaces X1 and
X2.

T.25 Remark. The product topology on Rn given by the usual topology
on R (defined by induction on n) is the same as the usual topology.

T.26 Proposition [Universal property of the product topology].
Suppose that X = X1 × X2 is the product of two topological spaces X1

and X2. Then the two projection maps pi : X → Xi ((x1, x2) 7→ xi) are
continuous and, given any map f : Y → X from a topological space Y , f is
continuous if and only if the two maps pi ◦ f : Y → Xi are continuous.

T.27 Proposition. Given two Hausdorff spaces X1 and X2, the product
space X1 ×X2 is Hausdorff.

T.28 Proposition. Given two second countable spaces X1 and X2, the
product space X1 ×X2 is second countable.

T.29 Theorem. Given two compact spaces X1 and X2, the product space
X1 ×X2 is compact.

Disjoint unions

T.30 Definition. Given topological spacesX1 andX2 such thatX1∩X2 =
∅ we write X1 tX2 = X1 ∪X2 to include the information that the sets are
disjoint. The disjoint union topology on X1 tX2 is given by U ⊂ X1 tX2

is open if and only if U ∩Xi is open in Xi for i = 1, 2. We call X1tX2 with
the disjoint union topology the disjoint union of X1 and X2.
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T.31 Proposition [Universal property of the disjoint union topol-
ogy]. Suppose that X1 ∪X2 is the disjoint union of topological spaces X1

and X2. Then a function f : X1 t X2 → Y to a topological space Y is
continuous if and only if the restrictions f |Xi : Xi → Y are continuous.

T.32 Remark. We often abuse notation and write X1 t X2 when the
spaces X1 and X2 are not disjoint. In this case we replace the spaces by
homeomorphic copies which are disjoint. So for example we might write
Sn t Sn to mean something which we should write (Sn×{1})t (Sn×{2}).

T.33 Proposition. Given two Hausdorff spaces X1 and X2, the disjoint
union X1 tX2 is Hausdorff.

T.34 Proposition. Given two second countable spaces X1 and X2, the
disjoint union X1 tX2 is second countable.

T.35 Proposition. Given two compact spaces X1 and X2, the disjoint
union X1 tX2 is compact.

Identification spaces

T.36 Definition. Suppose that q : X → Y is a surjection from a topolog-
ical space X to a set Y . Then the quotient topology on Y determined by X
is given by V ⊂ Y is open if and only if q−1(V ) is open in X. We call Y
with the quotient topology a quotient space of X.

T.37 Proposition [Universal property of the quotient topology].
Suppose that q : X → Y is a surjection of topological spaces and that Y has
the quotient topology determined by q. Then q is continuous and a function
f : Y → Z to a topological space Z is continuous if and only if f ◦q : X → Z
is continuous.

T.38 Definition. An equivalence relation on a set X is a relation ∼ which
satisfies the following properties for all x, y, z ∈ X,

reflexivity x ∼ x;

symmetry if x ∼ y then y ∼ x;

transitivity if x ∼ y and y ∼ z then x ∼ z.
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T.39 Proposition. An equivalence relation ∼ on a set X generates a
partition of the set X into disjoint equivalence classes. For x0 ∈ X, the
equivalence class of x0, [x0], is defined by [x0] = {x ∈ X | x ∼ x0 }. We
write X/∼ for the set of equivalence classes.

T.40 Definition. Suppose that ∼ is an equivalence relation on a topolog-
ical space X. The quotient topology on the set of equivalence classes X/∼
is the quotient topology determined by the function q : X → X/∼, x 7→ [x].
With this topology we call X/∼ an identification space.

T.41 Example. Define an equivalence relation on I2 = [0, 1]2 by (s, t) ∼
(s, t) for all (s, t) ∈ I2, (s, 0) ∼ (s, 1), (s, 1) ∼ (s, 0), (0, t) ∼ (1, t) and
(1, t) ∼ (0, t). [We will normally describe this as the equivalence relation
generated by (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) since the other relations are
then automatic.] Then the identification space I2/∼ is homeomorphic to
the product space S1 × S1 known as the torus.

A homeomorphism F : I2/∼ → S1×S1 is induced by the continuous map
f : I2 → S1×S1 given by f(s, t) =

(
exp(2πis), exp(2πit)

)
(continuous by the

universal property of the product topology since the exponential function is
continuous).

This map given by F ([s, t]) = f(s, t) is a well-defined bijection since f is
a surjection such that f(s1, t1) = f(s2, t2)⇔ (s1, t1) ∼ (s2, t2). It is continu-
ous since f is continuous by the universal property of the quotient topology
(since F ◦ q = f). It is then a homeomorphism by Theorem T.17 since
S1 × S1 is Hausdorff (a product of Hausdorff spaces by Proposition T.11
and Proposition T.21) and I2/∼ is compact (since I2 is compact by The-
orem T.13 and the Proposition T.42 below which is a simple corollary of
Proposition T.16).

T.42 Proposition. If X is a compact space, then any identification space
X/∼ is also compact.

T.43 Remark. The Hausdorff and second countable properties are not
necessarily inherited by quotient spaces.
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