MATH41071/MATH61071 Algebraic topology

Problems 4: Simplicial complexes

1. Prove that if $x \in \langle v_0, v_1, \ldots, v_r \rangle$ is a point in an *r*-simplex then *x* can be written uniquely in the form $x = \sum_{i=0}^{r} t_i v_i$ where $\sum_{i=0}^{r} t_i = 1$. [Proposition 4.9]

2. Prove that an isomorphism $f: K_1 \to K_2$ of geometric simplicial complexes induces a homeomorphism $|f|: |K_1| \to |K_2|$ of their underlying spaces. [Corollary 4.11]

3.(*) Describe triangulations of the closed cylinder $I^2/(s,0) \sim (s,1)$ and of the Möbius band $I^2/(s,0) \sim (1-s,1)$.

4. The *dunce hat* is obtained by identifying all three sides of a triangle as shown. Construct a simplicial complex which triangulates this space.

5.(*) Given a simplicial complex K with n_r r-simplices for $0 \leq r \leq \dim K$, the *Euler characteristic* $\chi(K)$ of K is defined by

$$\chi(K) = \sum_{r=0}^{\dim K} (-1)^r n_r.$$

Let $s_n = \langle v_0, v_1, \dots, v_n \rangle$, an *n*-simplex. Find the Euler characteristic of the following simplicial complexes:

- (i) $\overline{\Delta}^n$ (for $n \ge 0$);
- (ii) $(\bar{\Delta}^{[n-1]})$ (the (n-1)-skeleton of $\bar{\Delta}^n$, for $n \ge 1$);
- (iii) $(\bar{\Delta}^{[n-2]})$ (the (n-2)-skeleton of $\bar{\Delta}^n$, for $n \ge 2$);
- (iv) the simplicial complex you constructed in Question 4.

6. Prove that the standard *n*-simplex Δ^n is homeomorphic to the *n*-ball D^n .

[Hint: Produce a sequence of homeomorphisms

$$\Delta^{n} \cong \left\{ (t_{1}, \dots, t_{n}) \in \mathbb{R}^{n} \middle| t_{i} \ge 0, \sum_{i=1}^{n} t_{i} \le 1 \right\} \cong I^{n} = \left\{ (t_{1}, \dots, t_{n}) \middle| t_{i} \ge 0, \max(t_{i}) \le 1 \right\}$$
$$\cong [-1, 1]^{n} = \left\{ (t_{1}, \dots, t_{n}) \middle| t_{i} \ge 0, \max(|t_{i}|) \le 1 \right\} \cong D^{n} = \left\{ (t_{1}, \dots, t_{n}) \middle| \sum_{i=1}^{n} t_{i}^{2} \le 1 \right\}$$
or you may find something simpler.]

pje\teaching\MATH31072\prob4.tex November 13, 2017