Problems 6: Homotopy and simplicial approximation

- 1. Using your simplicial complex K from Problems 5, Question 3(v), find the subcomplex L such that |L| gives the boundary circle of the Möbius band. Find the map of simplicial homology groups $H_1(L) \to H_1(K)$ induced by the inclusion map $L \to K$.
- **2.** Prove that homotopy is an equivalence relation on the set of continuous functions from a topological space X to a topological space Y.
- **3.** Prove that if a topological space X is contractible then
 - (i) X is path-connected;
 - (ii) for every point $x_0 \in X$, $\{x_0\}$ is a deformation retract of X.

4.

- (a) Let K be the geometric simplicial complex in \mathbb{R} with vertices 0, 1/3 and 1 and edges $\langle 1,1/3\rangle$ and $\langle 1/3,1\rangle$, and L be the geometric simplicial complex in \mathbb{R} with vertices 0, 2/3 and 1 and edges $\langle 1,2/3\rangle$ and $\langle 2/3,1\rangle$. Thus |K|=|L|=[0,1]. Let $f\colon [0,1]\to [0,1]$ be the function $f(x)=x^2$. Prove that
 - (i) $f \colon |K| \to |L|$ does not have a simplicial approximation
 - (ii) $f: |K'| \to |L|$ does not have a simplicial approximation.
 - (iii) $f: |K''| \to |L|$ does have a simplicial approximation.
- (b) Consider the simplicial complex L vertices v_1, v_2, v_3, v_4, v_5 , which is sketched below, and an injective continuous map $f: [0, 1] \to |L|$ having

the image being indicated in the picture. Let K be the simplicial complex consisting just of the simplex $\langle 0,1\rangle$ and its faces. Give a simplicial approximation for f on a sufficiently fine barycentric subdivision $K^{(m)}$ of K.

6. Use the simplicial approximation theorem to prove that all continuous functions $S^m \to S^n$ are homotopic to a constant function and so that there is only one homotopy class of functions $S^m \to S^n$ if $0 \le m < n$.