
MATH4/61071

SECTION A A

Answer ALL FOUR questions.

A1.

(a) Define what is meant by a topological manifold.

(b) Give an example of a topological space which is not a manifold and state which of the defining
properties is not fulfilled.

(c) State the classification theorem for connected compact topological surfaces.

[10 marks]

Solution

(a) Let n be a non-negative integer. An n-dimensional (topological) manifold is a topological space
X which

(i) is Hausdorff,

(ii) is second countable (i.e. has a countable basis), and

(iii) is locally Euclidean, i.e. each point x ∈ X lies in an open subset V in X which is homeo-
morphic to an open subset U ⊂ Rn (with the usual topology).

[5 marks, bookwork]

(b) There are plenty of examples. Just to name two of them

(i) The union of two lines in R2 intersecting in a point (e.g. {(x, y) ∈ R2 | x = 0 or y = 0}),
which is not locally Euclidean at the intersection point.

(ii) R× {0, 1}/∼, with (x, 0) ∼ (x, 1) for x 6= 0. This space is not Hausdorff.

[2 marks, bookwork]

(c) Every connected compact topological surface (or closed surface) is homeomorphic to one and
only one of:

(i) S2,

(ii) Tg for some g > 1 (where T1 = S1 × S1 and Tg+1 = Tg#T1 for g > 1),

(iii) Pg for some g > 1 (where P1 = P 2 and Pg+1 = Pg#P1 for g > 1). [3 marks, bookwork]

[Total: 10 marks]
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Feedback: The question was meant to be easy. The definition of a manifold was fundamental for
the first part of the course (on surfaces). Some people forgot to explain what locally Euclidean means
in part (b). People couldn’t come up with a counterexample in part (b). Part (c) was generally done
well.

A2.

(a) Define what is meant by a geometric simplicial complex K.
[The notions of geometric simplex and face of a simplex may be used without definition.]

(b) What is the underlying space |K| of such a simplicial complex K?

(c) An abstract simplicial complex has vertices v1, v2, v3, v4, v5 and simplices {v1, v2, v3}, {v2, v4},
{v4, v5}, {v3, v5}, {v2, v5} and their faces. Draw a realisation K of this simplicial complex as a
geometric simplicial complex in R2.

(d) Define the Euler characteristic of a simplicial complex and calculate the Euler characteristic of
the simplicial complex in part (c).

(e) Draw the first barycentric subdivision K ′ of the geometric simplicial complex K in part (c).

(f) Find the Euler characteristic of K ′.

[10 marks]

Solution

(a) A (geometric) simplicial complex is a non-empty finite set K of simplices in some Euclidean
space Rn such that

(a) the face condition: if σ ∈ K and τ ≺ σ then τ ∈ K,

(b) the intersection condition: if σ1 and σ2 ∈ K then σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 ≺ σ1,
σ1 ∩ σ2 ≺ σ2.

[2 marks, bookwork]

(b) The underlying space |K| of a simplicial complex K is given by

|K| =
⋃
σ∈K

σ ⊂ Rn

with the subspace topology. [1 mark, bookwork]

(c) A realisation is given by the following picture

v1

v2

v3

v4

v5
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[2 marks, similar to question set]

(d) The Euler characteristic of a simplicial complex K is given by the alternating sum

χ(K) =
∞∑
r=0

(−1)rnr

where nr is the number of simplices of dimension r. In this case χ(K) = 5− 7 + 1 = −1.

[2 marks, bookwork]

(e) The barycentric subdivision is given by the following picture

v1

v2

v3

v4

v5

[2 marks, similar to question set]

(f) The Euler characteristic is again −1, since barycentric subdivisions does not change the Euler
characteristic [It can also be found by counting simplices.] [1 mark, simple application]

[Total: 10 marks]

Feedback: The question was generally done well. Occasionally people mixed up the definitions of
simplicial complex with that of a simplicial surface (no link condition, no connectedness was needed
here)

A3.

(a) Define what is meant by the r-chain group Cr(K), the r-cycle group Zr(K), and the r-boundary
group Br(K) of a simplicial complex K.

(b) Write down, without proof, generators for the groups Z1(K) and B1(K) of the simplicial
complex K in Question A2(c). Hence, find the first homology group H1(K).

[10 marks]

Solution

(a) For r ∈ Z. the r-chain group of K, denoted Cr(K), is the free abelian group generated by Kr,
the set of oriented r-simplices of K subject to the relation σ+ τ = 0 whenever σ and τ are the
same simplex with the opposite orientations. [2 marks, bookwork]

For each r ∈ Z we define the boundary homomorphism dr : Cr(K)→ Cr1(K) on the generators

dr(〈v0, . . . , vr〉) =
r∑
i=0

(−1)i〈v0, . . . , vi−1, vi+1, . . . , vr〉
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and then extend linearly. [2 marks, bookwork]

The kernel of the boundary homomorphism dr is called the r-cycle group and denoted by
Zr(K), i.e. Zr(K) = {c ∈ Cr(K) | dr(c) = 0}. [1 mark, bookwork]

The image of the boundary homomorphism dr+1 is called the r-boundary group and is denoted
by Br(K), i.e. Br(K) = {dr+1(c) | c ∈ Cr+1(K)}. [1 mark, bookwork]

(b) Z1(K) ∼= Z3 is generated by

z1 = 〈v1, v3〉+ 〈v3, v2〉+ 〈v2, v1〉
z2 = 〈v3, v5〉+ 〈v5, v2〉+ 〈v2, v3〉
z3 = 〈v5, v4〉+ 〈v4, v2〉+ 〈v4, v5〉

B1(K) ∼= Z is generated by z2. [2 marks, similar to question set]

We obtain
H1(K) = Z1(K)/B1(K) = (Zz1 ⊕ Zz2 ⊕ Zz3)/Zz2

∼= Z2.

[2 marks, similar to question set]

[Total: 10 marks]

Feedback: The question was generally done well. The most common mistake in (a) was a missing
reference to the orientation of a simplex. In part (b) I have often seen notation like Z3/Z. Note,
that this does not make sense, since Z is not a subgroup of Z3 (although there are many subgroups
of Z3 being isomorphic to Z but the quotient will depend on the choice of such a subgroup).

A4.

(a) Consider the simplicial complex K consisting of the two 4-simplices 〈0, e1, e2, e3, e4〉 ∈ R4 and
〈0, e1, e2, e3,−e4〉 ∈ R4 (which intersect in a 3-simplex as a common face) and all their faces.
Give an argument why the homology groups of K are given by

Hi(K) =

{
Z i = 0

0 else.

(b) Let L be the 3-skeleton of K. Calculate the Euler characteristic of L and find its simplicial
homology groups.

[10 marks]

Solution

(a) The underlying space is contractible. Indeed, H(t, x) := t · x gives a homotopy between the
identity and the constant map. Because of the homotopy invariance of homology the homology
groups are the same as for a point. [3 marks, similar to question set]
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(b) For the Euler characteristic of |K| we have χ(|K|) = χ(∗) = 1, since the Euler characteristic
depends only on the ranks of the homology groups. On the other hand we have

χ(L) =
3∑
r=0

(−1)rnr = χ(K)− n4 = χ(K)− 2 = −1,

since we have exactly two 4-dimensional simplices in K. [2 marks, similar to question set]

Now L is 3-dimensional and so and so has trivial homology groups in dimensions above 3. For
0 6 i 6 3 we have Ci(K) = Ci(L) and the boundary homomorphisms are the same. Hence,
Hi(K) = Hi(L) for 0 6 i 6 2. Since C4(L) = 0 we have H3(L) = Z3(L) a free group of rank
β3. Now, using the identity −1 = χ(L) =

∑
(−1)iβi we obtain 1− β3 = −1(since β1 = β2 = 0)

and so β3 = 2 and H3(L) = Z2. [5 marks, similar to question set]

Feedback: Most people used the correct approach to solve the problem. Occasionally people mixed
up the notion of homotopy equivalence with that of homeomorphic spaces. Also some people seemed
to be confused by the fact that an r-simplex has r + 1 vertices (when using binomial coefficients to
count simplices)
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SECTION B B

Answer THREE of the FOUR questions.

B5.

(a) Explain how a surface symbol may be used to represent a closed surface arising from the
identification in pairs of the edges of a polygon.

(b) State the classification theorem for surface symbols.

(c) The boundaries of four discs are identified as shown below

?
a
HHHjb �

��7
c

S
SSw

d��
�*e

6c
HHHje �

��7
f

S
SSw

g��
�*h

6f
HHHji �

��7
a

S
SSo j

����
d

6j
HHHjh �

��7
b

S
SSo
g����

i

Find a symbol for the resulting closed surface. By reducing the symbol to canonical form, or
otherwise, identify the surface up to homeomorphism.

[15 marks]

Solution

(a) To write down a symbol respresenting a topological polygon with edges identified in pairs a
letter is assigned to each edge of the polygon, assigning the same letter to two edges if and
only if they are to identified. starting at any vertex, write down the letters in sequence going
around the boundary, assigning the exponent −1 at the second appearance if the order to the
vertices is reversed. [4 marks, bookwork]

(b) The classification theorem states that every closed surface is representatable by one and only
one of the following symbols:

(i) xx−1,

(ii) x1y1x
−1
1 y−1

1 . . . xgygx
−1
g y−1

g ,

(iii) x1x1 . . . xgxg.

[2 marks, bookwork]

(c) We can produce a single polygon with edges to be identified in pairs by using three edge
identifications to join up the four polygons as follows.

?
a
HHHjb �

��7
c

S
SSw

d�
��*e

HHHj
h

?
g

S
SSw

e
��
�*
f

?
i
HHHja �

��7
j

S
SSod

S
SSw

h
��
�*
b

6g
H
HHYi
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This may be represented by the symbol abeiahbgidg−1h−1d−1e−1

[3 marks, similar to question set]

Now reducing the symbol for the polygon identifications to standard form gives the following.

ȧbeiȧhbgidg−1h−1d−1e−1 ∼ (aa)i−1ė−1b−1hbgidg−1h−1d−1ė−1

∼ (aa)i̇−1(e−1e−1)dhgd−1i̇−1g−1b−1h−1b

∼ (aa)(e−1e−1)(i−1i−1)dġ−1h−1d−1ġ−1b−1h−1b

∼ (aa)(e−1e−1)(i−1i−1)d(g−1g−1)dhb−1h−1b

∼ (aa)(e−1e−1)(i−1i−1)(g−1g−1)(dd)(hb−1h−1b)

∼ (x1x1x2x2x3x3x4x4x5x5)(x6y6x
−1
6 y−1

6 )

∼ x1x1x2x2x3x3x4x4x5x5x6x6x7x7

[5 marks, similar to question set]

Hence the surface is non-orientable of genus 7. [1 marks, similar to question set]

[Total: 15 marks]

Feedback: Most people did well here. There was some confusion on part (a). Occasionally people
didn’t remember the algorithm to reduce symbols.

B6. Let ei be the ith standard basis vector in R8 , 1 6 i 6 8. Consider the set K of sixteen triangles
with vertices ei , ej and ek where ijk runs over the following triples:

126, 236, 138, 148, 348, 146, 365, 345, 467, 675, 472, 751, 452, 152, 237, 137.

(a) Verify that K is a simplicial surface, [For the link condition, you need only check the vertices
e1 and e8 to illustrate the method.]

(b) Represent the underlying space of K as a polygon with edges identified in pairs.

(c) Calculate the Euler characteristic of K and determine whether it is orientable.

(d) Identify the underlying space of K up to homeomorphism.

[15 marks]

Solution

(a) The intersection condition is satisfied automatically since the vertices are linearly independent.

[1 mark]

The connectivity condition is satisfied because (for example) the following edges link all of the
vertices: e8 − e1 − e2 − e3 − e4 − e5 − e6 − e7. [1 mark]

For the link condition look at

link(e1): e7 − e3 − e8 − e4 − e6 − e2 − e5 − e7
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link(e8): e1 − e3 − e4 − e1

Which are closed polygons. [2 mark]

(b) A corresponding polygon with edges identified in pairs might look as follows.

e1 e8 e1 e2 e7

e3 e4 e6 e3 e4

e7 e7 e5 e4

e3 e1 e2 e7

a a b c

d

e

f

f g

cbh

d

i
i

g

e

h

[5 marks]

(c) For th Euler characteristic note, that we have 8 vertices and 16 triangles. For the number of
edges we obtain e(K) = 3

2
· 16 = 24. Hence, χ(K) = 8− 24 + 16 = 0. [2 marks]

K is orientable. This is best seen, when considering the corresponding polygon with pairwise
identified edges. There, every edges occurs twice on the boundary, but in opposite directions.
This implies orientability. Indeed, we may orientate all triangles, say clockwise, in the picture
above. It’s obvious that these orientations are coherent along the inner edges. A direct check
shows coherence also along the boundary edges (this is exactly due to the fact that every edges
occurs in clockwise and anti-clockwise direction along the boundary). [2 marks]

(d) By the Classification Theorem the underlying space of K is homeomorphic to the torus T1.

[2 marks]

[Total: 15 marks, similar to question set]

Feedback: The most problems occured in part (c) when talking about orientability. Occasionally
people forgot to make a statement at all. More often people correctly state that the surface is
orientable but their argument was incomplete. It is important then when choosing to orient all
triangles e.g. clockwise in the plane, that then the orientations are also coherent along the boundary
edges.

B7.

(a) Outline the definition of the connected sum S1#S2 of two connected surfaces S1 and S2.

(b) State, and outline the proof of, the relationship between χ(S1), χ(S2) and χ(S1#S2).

8 of 0 P.T.O.



MATH4/61071

(c) Calculate the Euler characteristic of the surfaces that arise in the classification theorem for
compact connected surfaces. [You may assume the Euler characteristic of the 2-sphere, the
torus and the projective plane without proof.]

(d) Explain the rôle of the Euler characteristic in proving the classification theorem for connected
compact surfaces.

[15 marks]

Solution

(a) Suppose that S1 and S2 are non-empty path-connected topological surfaces. Choose subspaces
V1 ⊂ S1 and V2 ⊂ S2 which are homeomorphic to the open disc B1(0) ⊂ R2 by homeomorphisms

φi : B1(0)→ Vi for i = 1 and i = 2

We obtain the connected sum by removing the interiors of smaller discs, i.e. φi
(
B2

1/2(0)
)

and
glue along the boundary circles. More precisely, we define the quotient space of the disjoint
union

S =
[(
S1 − φ1

(
B2

1/2(0)
))
t
(
S2 − φ2

(
B2

1/2(0)
))]/

∼

where φ1(u) ∼ φ2(u) for u ∈ B2
1(0) with |u| = 1/2.

[4 marks]

(b) We have the following relation χ(S1#S2) = χ(S1) + χ(S2)− 2.

Suppose that K1 and K2 are simplicial surfaces such that |K1| ∼= S1 and |K2| ∼= S2. Then we
may construct simplicial surface K such that |K| ∼= S1#S2 by removing a triangle from each
of K1 and K2 and identifying the vertices and edges of this triangle. Then:
f(K) = f(K1) + f(K2)− 2,
e(K) = e(K1) + e(K2)− 3,
v(K) = v(K1) + v(K2)− 3.
Hence χ(K) = χ(K1) + χ(K2)− 2 + 3− 3 = χ(K1) + χ(K2)− 2 as required. [5 marks]

(c) By induction on g we obtain χ(Tg) = 2− 2g, since χ(T1) = 0 and

χ(Tg+1) = χ(Tg + T1) = χ(Tg) + χ(T1)− 2 = (2− 2g)− 2 = 2− 2(g + 1).

Similarly for Pg, since χ(P1) = 1 we obtain χ(Pg) = 2− g by induction

χ(Pg+1) = χ(Pg + P1) = χ(Pg) + χ(P1)− 2 = (2− g) + 1− 2 = 2− (g + 1).

[4 marks]

(d) The Euler characteristic is used in the proof of the classification theorem to help to distinguish
the spaces in the list. Indeed, all orientable surfaces can be distinguished from each other by the
Euler characteristic and all non-orientable surfaces from each other. However, χ(P2g) = χ(Tg).
Hence, we need additionally the orientability property. [2 marks]

[Total: 15 marks]
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Feedback: Most people did well, but it’s import to note that even in an outline I want to see
precise statement, i.e. only saying that we remove open discs and glue along their boundaries was
not enough (and is even wrong if one chooses these discs not carefully).

B8.

(a) Let K and L be simplicial complexes. Define what is meant by a simplicial map |K| → |L|
(with respect to K and L). Define what is meant by a simplicial approximation to a continuous
map f : |K| → |L| (with respect to K and L).

(b) Prove that a simplicial approximation to f is homotopic to f .

(c) Let K = L be the 1-skeleton of the 2-simplex ∆̄2 so that |K| ∼= S1(⊂ C) by radial projection.
Let f : S1 → S1 be the function given by f(z) = z2. Prove that the corresponding function
f : |K| → |L| does not have a simplicial approxiation with respect to K and L but with respect
to |K ′| and |L|, where K ′ denotes the barycentric subdivision of K.

[15 marks]

Solution

(a) A map of simplicial complexes s : K → L is induced by a map of the vertex sets s0 : V (K)→
V (L) so that if {v0, v1, . . . , vr} is an r-simplex of K then {s0(v0), s0(v1), . . . , s0(vr)} is a simplex
in L (possibly of lower dimension since s0 need not be an injection on the vertices of the
simplex). Such a map of the vertices may be extended by linearity over the simplices and gives
a continuous function |s| : |K| → |L| by the Gluing Lemma. A function between the underlying
spaces which arises in this way is called a simplicial map. [3 marks, bookwork]

We say that a simplicial map |s| : |K| → |L| is a simplicial approximation to a continuous map
f : |K| → |L| if, for each point x ∈ |K|, the point |s|(x) belongs to the carrier of f(x) i.e.
simplex of L whose interior contains f(x). [2 marks, bookwork]

(b) Define H : |K| × I → |L| by H(x, t) = (1− t)|s|(x) + tf(x) ∈ |L|. This definition makes sense
since both of |s|(x) and f(x) lie in the carrier of f(x) which is a convex subset of Euclidean
space. As a composition of continuous functions H is clearly continuous. [2 marks, bookwork]

(c) Radial projection gives a homeomorphism h : |K| → S1, which is the identity on v1 = 1 ,
v2 = exp(2

3
πi) and v3 = exp(4

3
πi), since those point lie already on S1. Then f(z) = z2

corresponds to a function g : |K| → |K| with g(v1) = v1, g(v2) = v3 and g(v3) = v2. So a
simplicial approximation |φ| to g would have to be given by this vertex map. Now, consider
x = (v1 + v2)/2 = h−1(eπi/3), whose carrier is 〈v1, v2〉. We have then g(x) = v2, but |φ|(x) =
(v1 + v3)/2 /∈ carrL(v2) = v2.

[4 marks, bookwork]

The first barycentric subdivision introduces new vertices at w1 = h−1
(
eπi/3

)
, w2 = h−1(−1)

and w3 = h−1
(
exp(5πi/3)

)
. Then the simplicial map corresponding to the admissible vertex

map v1 7→ v1, w1 7→ v2, v2 7→ v3, w2 7→ v1, v3 7→ v2 and w3 7→ v3 actually is the function g and
so is certainly a simplicial approximation to it. [4 marks, bookwork]

[Total: 15 marks]
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Feedback: Only a few people attempted the question.

11 of 0 P.T.O.



MATH4/61071

SECTION C C

Answer ALL THREE questions.

C9.

(a) Define what is meant by the degree deg(f) of a continuous selfmap f : Sn → Sn of a sphere.
Show that your definition does not depend one the choice of a triangulation.

(b) Calculate the degree of the map f : S1 → S1 given by f(z) = z2 for z ∈ S1 ⊂ C.

(c) Given two continuous maps f, g : Sn → Sn show that deg(f ◦ g) = deg(f) · deg(g) holds.

(d) Show that a homeomorphism f : Sn → Sn has either degree 1 or −1.

[16 marks]

Solution

(a) Consider a triangulation h : |K| → Sn of the of the n-sphere. Then f : Sn → Sn induces an
map (h−1 ◦f ◦h) : |K| → |K|. Hence, a homomorphism (h−1 ◦f ◦h)∗ : H

n(K)→ Hn(K). Since
Hn(K) ∼= Z the homomorphism (h−1 ◦ f ◦ h)∗ must be given by [z] 7→ λ[z] for some λ ∈ Z. We
then define deg(f) = λ. [4 mark, bookwork]

Assume, there is a second triangulation k : |L| → Sn. Then we have a homeomorphism g =
h−1 ◦ k : |L| → |K|. With this definition we obtain

(k−1◦f ◦k)∗([z]) = (g−1◦h−1◦f ◦h◦g)∗([z]) = g−1
∗ ((h−1◦f ◦h)∗(g∗([z]))) = g−1

∗ (λg∗([z])) = λ[z],

Where the equalities follow from the definition of g, the functoriality of homology, the definition
of λ above and the fact that g−1

∗ is a homomorphism. [3 mark, bookwork]

(b) We consider the triangulation K and simplicial approximation g from B8 c). Note, that a
generator of Hn(K) = Hn(K ′) (which get identified via the isomorphism χ∗) is given by

z = [〈v1, w1〉+ 〈w1, v2〉+ 〈v2, w2〉+ 〈w2, v3〉+ 〈v3, w3〉+ 〈w3, v1〉]

(which gets identified with the homology class [〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉] via χ∗).

Now,
f∗([z]) = [〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉+ 〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉] = 2[z].

Hence, deg(f) = 2.

[4 mark, bookwork]

(c) deg(f ◦ g) is given by

(f ◦ g)∗([z]) = f∗(g∗([z])) = f∗(deg(g)[z]) = deg(g) · (f∗([z])) = deg(g) deg(f)[z].

I.e. deg(f ◦ g) = deg f · deg g. Note, that the equalities above follow from the functoriality of
homology, the definition of deg(g), the fact that f∗ is a group homomorphism and the definition
of deg(f). [3 mark, bookwork]

12 of 0 P.T.O.



MATH4/61071

(d) Consider idSn = f ◦ f−1. By the above and the fact that deg(id) = 1 one obtains 1 =
deg(f) · deg(f−1). But 1 and −1 are the only elements of Z with multiplicative inverses.

[2 mark, bookwork]

[Total: 16 marks]

Feedback: Those who attempted the question usually did well. However part (c) was often left
out.

C10.

(a) Define what is meant by saying that (X,A) is a triangulable pair of spaces.

(b) State the axioms for the reduced homology groups of triangulable spaces.

(c) Prove, from the axioms, that a homotopy equivalence of triangulable spaces f : X → Y induces
isomorphisms f∗ : H̃k(X)→ H̃k(Y ) of reduced homology groups.

(d) Determine from the axioms the reduced homology groups of the wedge sum of two spheres
Sn ∨ Sn. [For this you may assume the reduced homology of the sphere without proof.]

[17 marks]

Solution

(a) A triangulable pair of spaces (X,A) is a topological space X with a subspace A such that
there is a homeomorphism h : X → |K|, the underlying space of a simplicial complex K, with
h(A) = |L| the underlying space of a subcomplex L of K. [2 mark, bookwork]

(b) A reduced homology theory assigns to each non-empty triangulable space X a sequence of
abelian groups H̃n(X) for n ∈ Z and for each continuous map of triangulable spaces f : X → Y
a sequence of homomorphisms f∗ : H̃n(X)→ H̃n(Y ) such that the following axioms hold.

(i) [Functorial Axiom 1] Given continuous functions f : X → Y and g : Y → Z, it follows
that

g∗ ◦ f∗ = (g ◦ f)∗ : H̃n(X)→ H̃n(Z) for all i.

(ii) [Functorial Axiom 2] For the identity map idX : X → X,

(idX)∗ = idHn(X) : H̃n(X)→ H̃n(X) (the identity homomorphism) for all n.

(iii) [Homotopy Axiom] For homotopic maps f ' g : X → Y ,

f∗ = g∗ : H̃n(X)→ H̃n(Y ) for all n.
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(iv) [Exactness Axiom] For any triangulable pair (X,A) there are boundary homomorphisms
∂ : H̃n(X/A)→ H̃n−1(A) for all n which fit into a long exact sequence as follows.

. . .→ H̃n(A)
i∗→ H̃n(X)

q∗→ H̃n(X/A)
∂→ H̃n−1(A)

i∗→ H̃n−1(X)→ . . .

Furthermore, given any continuous function of triangulable pairs f : (X,A)→ (Y,B) (i.e.
f : X → Y such that f(A) ⊂ B) this induces a continuous function of quotient spaces
f̄ : X/A→ Y/B. Then the following diagram commutes for all n.

H̃n(X/A) ∂ //

f̄∗
��

H̃n−1(A)

f∗
��

H̃n(Y/B) ∂ // H̃n−1(B)

(v) [Dimension Axiom] H̃0(S0) ∼= Z and H̃n(S0) = 0 for all n 6= 0.

[7 marks, bookwork]

(c) Suppose f : X → Y and g : Y → X are homotopy inverses to each other, i.e. f ◦ g ' idY and
g ◦ f ' idX . Then by (i) and (ii) we have

f∗ ◦ g∗ = (f ◦ g)∗ = (idY )∗ = idH̃(Y )

and
g∗ ◦ f∗ = (g ◦ f)∗ = (idX)∗ = idH̃(X) .

Hence, f∗ and g∗ are inverse to each other and H̃(X) ∼= H̃(Y ). [3 marks, problem set

(d) Consider X1
∼= Sn and X2

∼= Sn and the pair (X1 ∨ X2, X1). One has (X1 ∨ X2)/X1
∼= X2.

Then the exactness axiom gives

. . .→ H̃k+1(X2)
∂→ H̃k(X1)

i∗→ H̃k(X1 ∨X2)
q∗→ H̃k(X2)

∂→ H̃k−1(X1)→ . . .

For k 6= n one has H̃k(X2) = H̃k(X1) = 0. Hence, H̃k(X1 ∨ X2) = 0. For k = n we have
H̃n(X2) = H̃n(X1) = Z and and H̃n+1(X2) = H̃n−1(X1) = 0. Hence, the is a short exact
sequence

0→ Z→ H̃n(X1 ∨X2)→ Z→ 0,

which implies H̃n(X1 ∨X2) ∼= Z× Z.

[5 marks, similar to problem set]

[Total: 17 marks]

Feedback: When stating the axioms people forgot to tell what H̃r(X) and f∗ actually are. Only
a few people attempted part (d). Often they put mor effort into it then it was actually needed by
proving the statement for general X1 and X2.

C11.

14 of 0 P.T.O.



MATH4/61071

(a) Define what is meant by a finite cellular complex.

(b) Define the cellular chain groups and the cellular boundary maps.

(c) Give a cellular decomposition of the projective plane.

(d) Calculate the cellular homology groups for the projective plane.

[17 marks]

Solution

(a) A finite cell complex (or finite CW complex) is a Hausdorff space X which is a finite disjoint
union X =

∐
α eα of subspaces that are open cells, together with a a characteristic map for

every cell eα: a continuous map fα : Dk → X that maps Bk homeomorphically to eα and maps
the boundary ∂B = Sk−1 continuously into a union of cells eβ that all have smaller dimension
than k. [4 marks, bookwork]

(b) Given a cell complex X we define the cellular chain groups as

Ck(X) = H̃k(X
k/Xk−1)

with boundary maps
dk : Ck(X)→ Ck−1(X)

given by the composition dk = (pk−1)∗ ◦ ∂k. Where ∂k : H̃k(X
k/Xk−1) → H̃k−1(Xk−1) is

the corresponding homomorphism from the long exact sequence for the pair (Xk, Xk−1) and
pk−1 : Xk−1 → Xk−1/Xk−2 is the contraction map.

The cellular homology groups are defined by

Hcell
k (X) = ker dk/ im dk+1.

[5 marks, bookwork]

(c) Using the construction P2 ∼= D2/∼ with x ∼ −x for points on the boundary we obtain a
decomposition of P2 into one 2-cell e2, one 1-cell e1 and one 0-cell e0. The 2-cell e2 is given as
the image of the interior under the quotient map q : D2 → P2 and the characteristic map f2 is
just the quotient map itself. The one 1-cell e1 coincides with the image of S1 \ {(1, 0), (−1, 0)}.
A characteristic map f1 : [−1, 1] → P2 is given by t 7→ [et·πi] ∈ S1/∼ ⊂ D2/∼ = P2. The unique
0-cell e0 is the image of (1, 0) and (−1, 0) and comes with the obvious characteristic map f0.

[4 marks, question set]

(d) Since the boundary of e1 consists only of one point we have d1 ≡ 0. For d2 note that X1/X0 =
X1 consists just of S1/∼ ∼= S1 and the map ϕ2,1 : S1 → X1/X0 = S1 is just the quotient map
S1 = ∂D2 → S1/∼ ∼= S1 (which is given by z 7→ z2). We have seen, that this is a degree-2 map.
Hence, we obtain

Hcell
k (X) =


Z k = 0

Z/2Z k = 1

0 else.

[4 marks, bookwork]

[Total: 17 marks]
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Feedback: Only a few people attemted the question. But those who tried usually did well. Often
the characteristic maps where missing in the description of the cell decomposition of the projective
plane. Also just drawing pictures of the k-cells was not sufficient.
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