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1. First of all recall that a product of Hausdorff spaces is Hausdorff (Propo-
sition T.27) and a product of second countable spaces is second countable
(Proposition T.28). For locally Euclidean suppose that (x1, x2) ∈M1×M2.
Then, since Mi is a topological ni-manifold there is a homeomorphism (a
chart) φi : Ui → Vi where Ui is open in Rni and x ∈ V which is open in Mi.
Hence, φ1 × φ2 : U1 × U2 → V1 × V2 is the required chart around (x1, x2).

2. Let {φλ : Uλ → Vλ | λ ∈ Λ } be an atlas on the compact local Euclidean
space X. Then {Vλ | λ ∈ Λ } is an open cover of X and so, since X is
compact this has a finite subcovering {Vλ1 , Vλ2 , . . . , Vλn }. Then each Vλi
is homeomorphic to an open subspace in some Rn and so has a countable
basis. The sets in each of these bases are all open in X since Vλi is open
in X. The union of these bases is countable and gives a basis for X since
any open set V ⊂ X can be written V =

⋃n
i=1(V ∩ Vλi) and each V ∩ Vλi is

open in Vλi and so may be written as a union of basic open sets. Hence X
is second countable.

3. An atlas for the identification space is given by the two maps φi : R2 →
(R2 × {0, 1})/∼ given by φi(x) = [(x, i)] for i = 0, 1. So the identification
space is locally Euclidean.
To see that the space is not Hausdorff suppose that U0 and U1 are open
subsets of the identification space such that [(0, 0)] ∈ U0, [(0, 1)] ∈ U1, then,
for i = 0, 1, q−1(Ui) is an open set in R2 × {0, 1} containing (0, i) so that
there is an εi > 0 such that Bεi(0) × {i} ⊂ q−1(Ui). Now, if x is a vector
such that 0 < |x| < min(ε1, ε2), [(x, 0)] = [(x, 1)] ∈ U1 ∩ U2 and so the
disjoint open sets whose existence is required by the Hausdorff condition do
not exist. Hence the identification space is not Hausdorff.

4. We may choose the two open sets V + = S2 \ {(0, 0, 1)} and V − = S2 \
{(0, 0,−1)}. Now, the map

φ± : R2 → V ±; (u1, u2) 7→
(

2u1
1 + u21 + u22

,
2u2

1 + u21 + u22
,±u

2
1 + u22 − 1

1 + u21 + u22

)
is continuous and has an inverse (check)

(φ±)−1 : V ± → R2; (x1, x2, x3) 7→
(

x1
1∓ x3

,
x2

1∓ x3

)
which is continuous on V ±, since x3 6= ±1.



5. Pick a point x on the boundary of the closed unit disc. Assume we have
an open neighbourhood V of x which is homeomorphic to an open subset
of R2. Then for ε > 0 sufficiently small we can find an open disc Bε(x)
such that B := (Bε(x) ∩ D2) ⊂ V . Now, restricting the homeomorphism
φ : V → U ⊂ R2 to B we obtain an homeomorphism between B and the
open subset U ′ := φ(B) ⊂ R2 and, hence, a homeomorphism between B\{x}
and U ′ \ {x′}, where x′ := φ(x).
Observe that B\{x} is a convex subset of R2, indeed B is (it’s an intersection
of convex sets) and x doesn’t lie on any line segment inside B. Hence
π1(B \ {x}, y0) is trivial for every choice of y0 by Example 6.3 (b) in the
Topology notes.
Now, choose some open disc Bδ(x

′) ⊂ U ′ then the boundary circle C of
Bδ/2(x

′) is a retract of U ′ \ {x′}. Indeed, r : u 7→ δ
2|u−x′|(u − x

′) + x′ is a
retraction map.
Take a point y′0 ∈ C and y0 = φ−1(y′0). Because of the functorial properties
of the fundamental group we must have

0 = π1(B \ {x}, y0) ∼= π1(U
′ \ {x′}, y′0)

(6.23 in Peter Eccles’ notes). Again by the functorial properties the compo-
sition

π1(C, y
′
0)

i∗−→ π1(U
′ \ {x′}, y′0)

r∗−→ π1(C, y
′
0)

has to be the identity on π1(C, y
′
0) (6.22 in Peter Eccles’ notes), but this is

impossible, since π1(U
′ \ {x′}, y′0) was assumed to be trivial. Note, that this

argument is the same as in the proof of Theorem 8.3 in Peter Eccles’ notes.

6. Define f : I2 → S1 × S1 by f(x, y) = (exp(2πix), exp(2πiy)). Then
f(x1, y1) = f(x2, y2)⇔ (x1, y1) ∼ (x2, y2). So f induces a bijection F : I2/∼
→ S1×S1 by F [x, y] = f(x, y). This is continuous by the universal property
of the quotient topology. I2 is compact (closed bounded subset of R2) and so
its continuous image I2/∼ is compact. S1×S1 is Hausdorff (Proposition 7.6)
and so F is a homeomorphism as required since it is a continuous bijection
from a compact space to a Hausdorff space.

7. Notice that D2 = { (x, y) | −1 6 x 6 1, −
√

1− x2 6 y 6
√

1− x2 }.
Define f : D2 → S2 by

f(x, y) =
(√

1− x2 cos
(
πy/

√
1− x2

)
,
√

1− x2 sin
(
πy/

√
1− x2

)
, x
)
.

Then this is a continuous surjection such that f(x, y) = f(x′, y′)⇔ (x, y) ∼
(x′, y′). Hence, since D2 is compact and S2 is Hausdorff, this induces in the
usual way a continuous bijection and so a homeomorphism F : D2/∼ → S2

by F ([x]) = f(x).

8. Two Möbius bands can be shown as follows.
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Identifying the boundary circles gives the following.
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Gluing along the edge c gives the following.
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Here the identifications of the sides are not quite as required for the Klein
bottle. However, if we cut along the line marked e in the first diagram
below and then glue along d we get the second diagram below which we can
recognize as the Klein bottle since top and bottom are identified without a
twist and the two sides are identified with a twist.
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Since the connected sum of two projective planes is obtained by removing a
disc from each and gluing the resulting spaces together along the boundary
circles and since the result of removing a disc from the projective plane is
the Möbius band (Proposition 1.20) it follows that P2 is homeomorphic to
the Klein bottle.

Notice that it is also possible to do this question (using techniques from §2)
by reducing the symbol representing the third diagram above to the standard
form: ab−1db−1ad−1 ∼ aabd−1bd−1 ∼ aabbdd−1 ∼ aabb which represents P2.
The Klein bottle is given by ab−1ab ∼ aabb and so is also P2. This is not
really a different proof since the rules for manipulating symbols are proved
by cut and paste techniques.

9 (This argument is very similar to the argument used in lectures in the
outline proof of Proposition 1.18. The difference is that whereas the torus is
formed by identifying the ends of a cylinder in one way, the Klein bottle is
formed by identifying the ends of a cylinder with a twist.). The first picture
shows the Klein bottle as a cylinder with the ends to be identified with a
disc removed to form the connected sum with S.
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Now, as in the proof of Proposition 1.18 in the lectures, we cut the Klein
bottle leaving a handle (homeomorphic to the cylinder S1 × I) and the
‘trousers space’ as above.
Now the proof is completed in the same way as the proof of Proposition 1.18.
However, notice that, whereas in Proposition 1.18 the arrows on the two
circles bounding the two discs removed from S are in opposite directions, in
this case the circles have arrows in the same direction.

10. When we attach a handle to a surface as in Proposition 1.18 and Ques-
tion 7, if the boundary circles of the cylinder are oriented in the same di-
rection, then the connected sum with the torus is obtained by removing two
discs from the surface and gluing the ends of the cylinder to the boundary
circles when these are oriented in the opposite directions from each other.
On the other hand the connected sum with the Klein bottle is obtained by
gluing the ends of the cylinder to the boundary circles when these are ori-
ented in the same direction as each other. However, it the surface contains
a Möbius band (as does P 2) then however the boundary circles are oriented
if you go one way round the Möbius band the circles will appear to have the
same orientation whereas if you go the other way round they will appear to
have the oppositive orientation.
It is easier to talk about this solution then to write it down. A more formal
proof (but possibly less enlightening) is provided by Corollary 2.27.


