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Abstract. Let X be an algebraic va-
riety covered by open charts isomor-
phic to the affine space and q : X̂ →
X be the universal torsor over X . We
prove that the automorphism group
of the quasiaffine variety X̂ acts on
X̂ infinitely transitively. Also we find
wide classes of varieties X admitting
such a covering.

Introduction

Universal torsors were introduced by
Colliot-Thélène and Sansuc in the frame-
work of arithmetic geometry to investi-
gate rational points on algebraic varieties,
see [11], [12], [29]. In the last years they
were used to obtain positive results on
Manin’s Conjecture. Another source of in-
terest is Cox’s paper [13], where an explicit
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description of the universal torsor over a
toric variety is given. This approach had an
essential impact on toric geometry. For gen-
eralizations and relations to Cox rings, see
[17], [8], [9], [16], [4].

Let X be a smooth algebraic variety. As-
sume that the divisor class group Cl(X ) is
a lattice of rank r. The universal torsor
q : X̂ → X is a locally trivial H-principal
bundle with certain characteristic proper-
ties, where H is an algebraic torus of dimen-
sion r, see [29, Section 1]; here X̂ is a smooth
quasiaffine algebraic variety.

The aim of this paper is to show that un-
der some mild restrictions on X the auto-
morphism group Aut(X̂ ) acts on X̂ infinitely
transitively. We use a construction of [21] to
show that open cylindric subsets on X de-
fine one-parameter unipotent subgroups Li
in Aut(X̂ ). It turns out that the subgroup
generated by Li acts on X̂ transitively. The
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next task is to prove that transitivity implies
infinite transitivity. To this end, we general-
ize some results of [5] from affine to quasi-
affine case.

The paper is organized as follows. In Sec-
tion 1 we recall basic definitions and facts on
Cox rings and universal torsors. The group
of special automorphisms SAut(Y ) of an al-
gebraic variety Y is considered in Section 2.
It is shown in [5] that if Y is affine of dimen-
sion at least 2 and the group SAut(Y ) acts
transitively on an open subset in Y , then
this action is infinitely transitive. In Theo-
rem 2 we extend this result to the case when
Y is quasiaffine.

It is observed in [21] that open cylindric
subsets on a projective variety X give rise to
one-parameter unipotent subgroups in the
automorphism group of an affine cone over
X . This idea is developed further in [22] and
[25]. In Section 3 we show that if X is a
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smooth algebraic variety with a free finitely
generated divisor class group Cl(X ), which is
transversally covered by cylinders, then the
group SAut(X̂ ) acts on the universal torsor
X̂ transitively.

As a particular case, in Section 4 we study
A-covered varieties, i.e. varieties covered by
open subsets isomorphic to the affine space.
Clearly, any A-covered variety is smooth and
rational. We list wide classes of A-covered
varieties including smooth complete toric or,
more generally, spherical varieties, smooth
rational projective surfaces, and some Fano
threefolds. It is shown that the condition to
be A-covered is preserved under passing to
vector bundles and their projectivizations as
well as to the blow up in a linear subvariety.
In the appendix to this paper we prove that
any smooth complete rational T -variety of
complexity one is A-covered. This part uses
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the technique of polyhedral divisors from [1],
[2].

In Section 5 we summarize our results
on universal torsors and infinite transitivity.
Theorem 3 claims that if X is an A-covered
algebraic variety of dimension at least 2,
then SAut(X̂ ) acts on the universal torsor X̂
infinitely transitively. If the Cox ring R(X ) is
finitely generated, then the total coordinate
space X := Spec R(X ) is a factorial affine va-
riety, the group SAut(X ) acts on X with an
open orbit O, and the action of SAut(X ) on
O is infinitely transitive, see Theorem 2. In
particular, the Makar-Limanov invariant of
X is trivial, see Corollary 1.

We work over an algebraically closed field
K of characteristic zero.



INFINITE TRANSITIVITY ON UNIVERSAL TORSORS 7

1. Preliminaries on Cox rings and universal
torsors

Let X be a normal algebraic variety with
free finitely generated divisor class group
Cl(X ). Denote by WDiv(X ) the group of
Weil divisors on X and fix a subgroup
K ⊆ WDiv(X ) such that the canonical map
c : K → Cl(X ) sending D ∈ K to its class
[D] ∈ Cl(X ) is an isomorphism. We define
the Cox sheaf associated to K to be

R :=
⊕

[D]∈Cl(X )

R[D], R[D] := OX (D),

where D ∈ K represents [D] ∈ Cl(X ) and the
multiplication in R is defined by multiplying
homogeneous sections in the field of ratio-
nal functions K(X ). The sheaf R is a quasi-
coherent sheaf of normal integral K-graded
OX -algebras and, up to isomorphy, it does
not depend on the choice of the subgroup
K ⊆ WDiv(X ), see [4, Construction I.4.1.1].
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The Cox ring of X is the algebra of global
sections

R(X ) :=
⊕

[D]∈Cl(X )

R[D](X ), R[D](X ) := Γ(X,OX (D)).

Let us assume that X is a smooth vari-
ety with only constant invertible functions.
Then the sheaf R is locally of finite type,
and the relative spectrum SpecX R is a quasi-
affine variety X̂ , see [4, Corollary I.3.4.6]. We
have Γ(X̂ ,O) � R(X ), and the ring R(X ) is a
unique factorization domain with only con-
stant invertible elements, see [4, Proposi-
tion I.4.1.5]. Since the sheaf R is K-graded,
the variety X̂ carries a natural action of
the torus H := Spec K[K]. The projection
q : X̂ → X is called the universal torsor over
the variety X . By [4, Remark I.3.2.7], the
morphism q : X̂ → X is a locally trivial H-
principal bundle. In particular, the torus H
acts on X̂ freely.
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Lemma 1. Let X be a normal variety. As-
sume that there is an open subset U on X
which is isomorphic to the affine space An.
Then any invertible function on X is constant
and the group Cl(X ) is freely generated by
classes [D1], . . . , [Dk] of the prime divisors
such that

X \ U = D1 ∪ . . . ∪ Dk.

Proof. The restriction of an invertible func-
tion to U is constant, so the function is con-
stant. Since U is factorial, any Weil divi-
sor on X is linearly equivalent to a divisor
whose support does not intersect U . This
shows that the group Cl(X ) is generated by
[D1], . . . , [Dk].

Assume that a1D1 + . . .+ akDk = div(f ) for
some f ∈ K(X ). Then f is a regular invertible
function on U and thus f is a constant. This
shows that the classes [D1], . . . , [Dk] gener-
ate the group Cl(X ) freely. �
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The Cox ring R(X ) and the relative spec-
trum q : X̂ → X can be defined and stud-
ied under weaker assumptions on the vari-
ety X , see [4, Chapter I]. But in this paper we
are interested in smooth varieties with free
finitely generated divisor class group.

Assume that the Cox ring R(X ) is finitely
generated. Then we may consider the to-
tal coordinate space X := Spec R(X ). This
is a factorial affine H-variety. By [4, Con-
struction I.6.3.1], there is a natural open H-
equivariant embedding X̂ ↪→ X such that the
complement X \ X̂ is of codimension at least
two.

2. Special automorphisms and infinite
transitivity

An action of a group G on a set A is
said to be m-transitive if for every two tu-
ples of pairwise distinct points (a1, . . . , am)
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and (a′1, . . . , a
′
m) in A there exists g ∈ G such

that g · ai = a′i for i = 1, . . . , m. An action
which ism-transitive for allm ∈ Z>0 is called
infinitely transitive.

Let Y be an algebraic variety. Consider a
regular action Ga × Y → Y of the additive
group Ga = (K,+) of the ground field on Y .
The image, say, L ofGa in the automorphism
group Aut(Y ) is a one-parameter unipotent
subgroup. We let SAut(Y ) denote the sub-
group of Aut(Y ) generated by all its one-
parameter unipotent subgroups. Automor-
phisms from the group SAut(Y ) are called
special. In general, SAut(Y ) is a normal sub-
group of Aut(Y ).

Denote by Yreg the smooth locus of a vari-
ety Y . We say that a point y ∈ Yreg is flexible
if the tangent space TyY is spanned by the
tangent vectors to the orbits L ·y over all one-
parameter unipotent subgroups L in Aut(Y ).
The variety Y is flexible if every point y ∈ Yreg
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is. Clearly, Y is flexible if one point of Yreg

is and the group Aut(Y ) acts transitively on
Yreg. Many examples of flexible varieties are
given in [6] and [5].

The following result is proven in [5, Theo-
rem 0.1].

Theorem 1. Let Y be an irreducible affine
variety of dimension ≥ 2. Then the following
conditions are equivalent.

1. The group SAut(Y ) act transitively on
Yreg.

2. The group SAut(Y ) act infinitely tran-
sitively on Yreg.

3. The variety Y is flexible.

A more general version of implication
1 ⇒ 2 is given in [5, Theorem 2.2]. In this
section we obtain an analog of this result for
quasiaffine varieties, see Theorem 2 below.

Let Y be an algebraic variety. A regular
action Ga × Y → Y defines a structure of
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a rational Ga-algebra on Γ(Y,O). The dif-
ferential of this action is a locally nilpotent
derivation D on Γ(Y,O). Elements in KerD
are precisely the functions invariant under
Ga. The structure of a Ga-module on Γ(Y,O)
can be reconstructed from D via exponential
map.

Assume that Y is quasiaffine. Then regu-
lar functions separate points on Y . In par-
ticular, any automorphism of Y is uniquely
defined by the induced automorphism of the
algebra Γ(Y,O). Hence a regular Ga-action
on Y can be reconstructed from the corre-
sponding locally nilpotent derivation D. At
the same time, if Y is not affine, then not
every locally nilpotent derivation on Γ(Y,O)
gives rise to a regular Ga-action on Y .

If D is a locally nilpotent derivation as-
signed to a Ga-action on a quasiaffine va-
riety Y and f ∈ KerD, then the derivation
fD is locally nilpotent and it corresponds to
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a Ga-action on Y with the same orbits on
Y \ div(f ), which fixes all points on the divi-
sor div(f ). The one-parameter subgroup of
SAut(Y ) defined by fD is called a replica of
the subgroup given by D.

We say that a subgroup G of Aut(Y ) is al-
gebraically generated if it is generated as an
abstract group by a family G of connected
algebraic1 subgroups of Aut(Y ).

Proposition 1. [5, Proposition 1.5] There
are (not necessarily distinct) subgroups
H1, . . . , Hs ∈ G such that

(1) G.x = (H1 · H2 · . . . · Hs) · x ∀x ∈ X.

A sequence H = (H1, . . . , Hs) satisfying
condition (1) of Proposition 1 is called com-
plete.

1not necessarily affine.
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Let us say that a subgroup G ⊆ SAut(Y )
is saturated if it is generated by one-
parameter unipotent subgroups and there
is a complete sequence (H1, . . . , Hs) of one-
parameter unipotent subgroups in G such
that G contains all replicas of H1, . . . , Hs. In
particular, G = SAut(X ) is a saturated sub-
group.

Theorem 2. Let Y be an irreducible quasi-
affine algebraic variety of dimension ≥ 2 and
let G ⊆ SAut(Y ) be a saturated subgroup,
which acts with an open orbit O ⊆ Y . Then G
acts on O infinitely transitively.

Remark 1. Let H be a one-parameter unipo-
tent subgroup of G. According to [26, The-
orem 3.3], the field of rational invariants
K(Y )H is the field of fractions of the alge-
bra K[Y ]H of regular invariants. Hence,
by Rosenlicht’s Theorem (see [26, Proposi-
tion 3.4]), regular invariants separate orbits
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on an H-invariant open dense subset U (H)
in Y . Furthermore, U (H) can be chosen
to be contained in O and consisting of 1-
dimensional H-orbits.

For the remaining part of this section we
fix the following notation. LetH1, . . . , Hs be a
complete sequence of one-parameter unipo-
tent subgroups in G. We choose subsets
U (H1), . . . , U (Hs) ⊆ O as in Remark 1 and
let

V =

s⋂
k=1

U (Hk) .

In particular, V is open and dense in O. We
say that a set of points x1, . . . , xm in Y is
regular, if x1, . . . , xm ∈ V and Hk · xi , Hk ·
xj for all i, j = 1, . . . , m, i , j, and all k =

1, . . . , s.

Remark 2. For any Hk, any 1-dimensional
Hk-orbits O1, . . . , Or intersecting V and any
p = 1, . . . , s we may choose a replica Hk,p
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such that all Oq but Op are pointwise Hk,p-
fixed. To this end, we findHk-invariant func-
tions fk,p,p′ such that fk,p,p′ |Op = 1, fk,p,p′ |Op′ =

0. Then we take

Hk,p = { exp(t(
∏
p′,p

fk,p,p′)Dk) ; t ∈ K },

where Dk is a locally nilpotent derivation cor-
responding to Hk.

Lemma 2. For every subset x1, . . . , xm ∈ O
there exists an element g ∈ G such that the
set g · x1, . . . , g · xm is regular.

Proof. For any xi there holds V ⊂ O =

H1 · · ·Hs · xi. The condition h1 · · ·hs · x ∈ V
is open and nonempty, hence we obtain an
open subset W ⊂ H1 × . . . × Hs such that
h1 · · ·hs · xi ∈ V for any (h1, . . . , hs) ∈ W and
any xi.

So we may suppose that x1, . . . , xm ∈ V .
Let N be the number of triples (i, j, k) such
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that i , j and Hk · xi = Hk · xj. If N = 0, then
the lemma is proved. Assume that N ≥ 1
and fix such a triple (i, j, k).

There exists l such that Hk · xi has at
most finite intersection with Hl-orbits; oth-
erwise Hk · xi is invariant with respect to all
H1, . . . , Hs, a contradiction with the condi-
tion dimO ≥ 2.

We claim that there is a one-parameter
subgroup H in G such that
(2)
Hk ·(h·xi) , Hk ·(h·xj) for all but finitely many elements h ∈ H.

Let us take first H = Hl. Condition (2)
is determined by a finite set of Hk-invariant
functions. So, either it holds or Hk · (h · xi) =

Hk · (h · xj) for all h ∈ H.
Assume that Hl · xi , Hl · xj. By Remark 2

there exists a replica H ′l such that H ′l ·xi = xi,
but H ′l · xj = Hl · xj. We take H = H ′l , and
condition (2) is fulfilled.
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Assume now the contrary. Then there ex-
ists hl ∈ Hl such that hl ·xi = xj. Then the set
{hnl · xi | n ∈ Z>0} has finite intersection with
any Hk-orbit, and hnl · xj = hn+1

l · xi lie in dif-
ferent Hk-orbits for an infinite set of n ∈ Z>0.
Therefore, this holds for an open subset of
Hl, and condition (2) is again fulfilled.

Finally, the following conditions are open
and nonempty on H:

(C1) h · x1, . . . , h · xm ∈ V ;
(C2) if Hp ·xi′ , Hp ·xj′ for some p and i′ , j′,

then Hp · (h · xi′) , Hp · (h · xj′).

Hence there exists h ∈ H satisfying (C1),
(C2), and condition (2). We conclude that
for the set (h · x1, . . . , h · xm) the value of N is
smaller, and proceed by induction. �

Lemma 3. Let x1, . . . , xm be a regular set and
G(x1, . . . , xm−1) be the intersection of the sta-
bilizers of the points x1, . . . , xm−1 in G. Then
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the orbit G(x1, . . . , xm−1) ·xm contains an open
subset in O.

Proof. We claim that there is a nonempty
open subset U ⊆ H1 × . . . × Hs such that
for every (h1, . . . , hs) ∈ U we have

h1 . . . hs·xm = g·xm for some g ∈ G(x1, . . . , xm−1).

Indeed, let Z be the union of orbits Hk ·
xi, k = 1, . . . , s, i = 1, . . . , m − 1. The
set V \ Z is open and contains xm. Let
U be the set of all (h1, . . . , hs) such that
hr . . . hs · xm ∈ V \ Z for any r = 1, . . . , s.
Then U is open and nonempty. Let us
show that for any (h1, . . . , hs) ∈ U and any
r = 1, . . . , s the point hr . . . hs · xm is in
the orbit G(x1, . . . , xm−1) · xm. Assume that
hr+1 . . . hs · xm ∈ G(x1, . . . , xm−1) · xm. By Re-
mark 2, there is a replica H ′r of the subgroup
Hr which fixes x1, . . . , xm−1 and such that the
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orbits

Hr · (hr+1 . . . hs ·xm) and H ′r · (hr+1 . . . hs ·xm)

coincide. Then H ′r is contained in
G(x1, . . . , xm−1) and the point hrhr+1 . . . hs ·xm
is in the orbit G(x1, . . . , xm−1) · xm for any
hr ∈ Hr . The claim is proved.

Now the image of the dominant morphism

U → O, (h1, . . . , hs) 7→ h1 . . . hs · xm

contains an open subset in O. �

Proof of Theorem 2. Let (x1, . . . , xm) and
(y1, . . . , ym) be two sets of pairwise dis-
tinct points in O. We have to show that
there is an element g ∈ G such that
g · x1 = y1, . . . , g · xm = ym.

We argue by induction on m. If m = 1,
then the claim is obvious. If m > 1, then
by inductive hypothesis there exists g′ ∈ G
such that g′ · x1 = y1, . . . , g′ · xm−1 = ym−1. If
g′ ·xm = ym, the assertion is proved. Assume
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that g′ · xm , ym. By Lemma 2, there exists
g′′ ∈ G such that the set

g′′ · y1, . . . , g
′′ · ym−1, g

′′ · ym , g
′′g′ · xm

is regular. Lemma 3 implies that the orbits

G(g′′·y1, . . . , g
′′·ym−1)·(g′′·ym) and G(g′′·y1, . . . , g

′′·ym−1)·(g′′g′·xm)

intersect, so there is g′′′ ∈ G(g′′ · y1, . . . , g′′ ·
ym−1) such that g′′′g′′g′xm = g′′ym. Then the
element g = (g′′)−1g′′′g′′g′ is as desired. �

3. Cylinders and Ga-actions

The following definition is taken from [21],
see also [22].

Definition 1. Let X be an algebraic variety
and U be an open subset of X . We say that
U is a cylinder if U � Z × A1, where Z is an
irreducible affine variety with Cl(Z ) = 0.

Proposition 2. Let X be a smooth algebraic
variety with a free finitely generated divisor
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class group Cl(X ), q : X̂ → X be the universal
torsor, and U � Z × A1 be a cylinder in X.
Then there is an action Ga × X̂ → X̂ such that

(i) the set of Ga-fixed points is X̂ \ q−1(U );
(ii) for any point y ∈ q−1(U ) we have q(L ·

y) = {z} × A1 for some z ∈ Z, where L
is the image of Ga in Aut(X̂ ).

Proof. Since Cl(U ) � Cl(Z ) = 0, we have an
isomorphism q−1(U ) � Z ×A1×H compatible
with the projection q, see [4, Remark I.3.2.7].
Thus the subset q−1(U ) admits a Ga-action

a ·(z, t, h) = (z, t+a, h), z ∈ Z, t ∈ A1, h ∈ H,

with property (ii). Denote by D the locally
nilpotent derivation on Γ(U,O) correspond-
ing to this action.

Our aim is to extend the action to X̂ . Since
the open subset q−1(U ) is affine, its comple-
ment X̂ \ q−1(U ) is a divisor ∆ in X̂ . We
can find a function f ∈ Γ(X̂ ,O) such that
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∆ = div(f ). In particular,

Γ(q−1(U ),O) = Γ(X̂ ,O)[1/f ].

Since f has no zero on any Ga-orbit on
q−1(U ), it is constant along orbits, and f lies
in KerD.

Lemma 4. Let Y be an irreducible quasiaffine
variety,

Y =

s⋃
i=1

Ygi , gi ∈ Γ(Y,O),

be an open covering by principle affine sub-
sets, and let

Γ(Ygi ,O) = K[ci1, . . . , ciri ][1/gi]

for some cij ∈ Γ(Y,O). Consider a finitely gen-
erated subalgebra C in Γ(Y,O) containing all
the functions gi and cij. Then the natural mor-
phism Y → Spec C is an open embedding.

Proof. Notice that Γ(Ygi ,O) = Γ(Y,O)[1/gi] =

C[1/gi]. This shows that the morphism



INFINITE TRANSITIVITY ON UNIVERSAL TORSORS 25

Y → Spec C induces isomorphisms Ygi �
(Spec C)gi . �

Let Y = X̂ and X̂ ↪→ Spec C be an affine
embedding as in Lemma 4 with f ∈ C. A
finite generating set of the algebra C is con-
tained in a finite dimensional D-invariant
subspace W of Γ(q−1(U ),O). Replacing D
with f mD we may assume that W is con-
tained in Γ(X̂ ,O). We enlarge C and assume
that it is generated by W . Then C is an
(f mD)-invariant finitely generated subalge-
bra in Γ(X̂ ,O) and we have an open embed-
ding X̂ ↪→ Spec C =: X̃ .

Replacing f mD with D′ := f m+1D, we ob-
tain a locally nilpotent derivation D′ on C
such that D′(C) is contained in fC. The cor-
responding Ga-action on X̃ fixes all points
on div(f ) and has the same orbits on q−1(U ).
Hence the subset X̂ ⊆ X̃ is Ga-invariant and
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the restriction of the action to X̃ has the de-
sired properties. The proof of Proposition 2
is completed. �

Remark 3. Under the assumption that the
algebra Γ(X̃ ,O) is finitely generated the proof
of Proposition 2 is much simpler.

The following definitions appeared in [25].

Definition 2. Let X be a variety and U � Z ×
A1 be a cylinder in X . A subsetW of X is said
to be U-invariant if W ∩ U = p−1

1 (p1(W ∩ U )),
where p1 : U → Z is the projection to the first
factor. In other words, every A1-fiber of the
cylinder is either contained in W or does not
meet W .

Definition 3. We say that a variety X is
transversally covered by cylinders Ui, i =

1, . . . , s, if X =
⋃s
i=1 Ui and there is no proper

subset W ⊂ X invariant under all Ui.
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Proposition 3. Let X be a smooth algebraic
variety with a free finitely generated divisor
class group Cl(X ) and q : X̂ → X be the uni-
versal torsor. Assume that X is transversally
covered by cylinders. Then the group SAut(X̂ )
acts on X̂ transitively.

Proof. Consider a Ga-action on X̂ associated
with the cylinder Ui as in Proposition 2.
Let Li be the corresponding Ga-subgroup in
SAut(X̂ ) and G be the subgroup of SAut(X̂ )
generated by all the Li. By construction, the
subgroups Li and thus the groupG commute
with the torus H.

Let S be a G-orbit on X̂ . By Proposi-
tion 2, the projection q(S) is invariant un-
der all the cylinders Ui, and thus q(S) coin-
cides with X . Let HS be the stabilizer of the
subset S in H. Then the map H × S → X̂ ,
(h, x) 7→ hx, is surjective and its image is
isomorphic to (H/HS) × S. Since H/HS is a



28 I. ARZHANTSEV, A. PEREPECHKO, AND H. SÜSS

torus and the variety X̂ has only constant in-
vertible functions, we conclude that HS = H
and thus S = X̂ . This shows that G, and
hence SAut(X̂ ), acts on X̂ transitively. �

4. A-covered varieties

The affine space An admits n coordinate
cylinder structures An−1 × A1, and the cov-
ering of An by these cylinders is transversal.
This elementary observation motivates the
following definition.

Definition 4. An irreducible algebraic vari-
ety X is said to be A-covered if there is an
open covering X = U1 ∪ . . .∪Ur , where every
chart Ui is isomorphic to the affine space An.

A choice of such a covering together with
isomorphisms Ui � An is called an A-atlas
of X . A subvariety Z of an A-covered variety
X is called linear with respect to an A-atlas,
if it is linear in all charts, i.e. Z ∩ Ui is a
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linear subspace in Ui � An. Any A-covered
variety is rational, smooth, and by Lemma 1
the group Pic(X ) = Cl(X ) is finitely generated
and free.

Clearly, the projective space Pn is A-
covered. This fact can be generalized in sev-
eral ways.

1) Every smooth complete toric variety X is
A-covered.

2) Every smooth rational complete variety
with a torus action of complexity one is
A-covered; see the appendix to this pa-
per.

3) Let G be a semisimple algebraic group
and be P a parabolic subgroup of G. Then
the flag variety G/P is A-covered. Indeed,
a maximal unipotent subgroup N of G
acts on G/P with an open orbit U iso-
morphic to an affine space. Since G acts
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on G/P transitively, we obtain the desired
covering.

4) More generally, every complete smooth
spherical variety is A-covered, see [10,
Corollary 1.5].

5) The Fano threefolds P3, Q, V5 and an
element of the family V22 are known to
be A-covered. Moreover, there are no
other types of A-covered threefolds of Pi-
card number 1 by [15]. In particular, the
Fano threefolds V12, V16, V18 and V4 from
Iskovskikh’s classification [20] are ratio-
nal but not A-covered.

6) The product of two A-covered varieties is
again A-covered.

7) More generally, every vector bundle over
An trivializes, and total spaces of vector
bundles over A-covered varieties are A-
covered. The same holds for their projec-
tivizations.
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8) If a variety X is A-covered and X ′ is a blow
up of X at some point p ∈ X , then X ′ is
A-covered.

9) In particular, all smooth projective ratio-
nal surfaces are obtained either from P2,
P1×P1 or from the Hirzebruch surfaces Fn
by a sequence of blow ups of points, and
thus they are A-covered.

10) We may generalize the blow up example
as follows. The blow up of X in a linear
subvariety Z is A-covered. Moreover, the
strict transforms of linear subvarieties,
which either contain Z or do not intersect
with it, are linear again (with the choice of
an appropriate A-atlas). Hence, we may
iterate this procedure.

Proof of statement 10). We consider one
chart U of the covering on X . We may
assume, that we blow up An = U in the
linear subspace given by x1 = . . . = xk = 0.
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By definition, the blow up X ′ is given in the
product An × Pk−1 by equations xizj = xjzi,
where 1 ≤ i, j ≤ k. If the homogeneous
coordinate zj equals 1 for some j = 1, . . . , k,
then xi = xjzi, and we are in the open chart
Vj with independent coordinates xj, xs with
s > k, and zi, i , j. So the variety X ′ is
covered by k such charts.

Let L be a linear subspace in U contain-
ing [x1 = . . . = xk = 0] and given by lin-
ear equations fi(x1, . . . , xk) = 0. The strict
transform of L is given in Vj by the equa-
tions fi(z1, . . . , zj−1,1, zj+1, . . . , zk) = 0. After
a change of variables xj 7→ xj − 1 these equa-
tions become linear.

Finally, if a linear subvariety Z ′ does not
meet the linear subvariety Z , then Z ′ does
not intersect charts of our atlas that inter-
sect Z , and the assertion follows. �
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Example 1. Consider the quadric threefold
Q. Choose two points and a conic passing
through them. Then these are linear sub-
varieties of Q with respect to an appropri-
ate atlas. Hence, the iterated blow up in the
points, first, and then in the strict transform
of the conic is A-covered.

We may use the above observations to
take a closer look at Fano threefolds.

Proposition 4. In the classification of
Iskovskikh [20] and Mori-Mukai [24] we have
the following (possibly non-complete) list of
A-covered Fano threefolds:

a) P3, Q, V5, (at least) one element V ′22 of the
family V22;

b) 2.33-2.36, 3.26-3.31, 4.9-4.11, 5.2, 5.3;
c) 2.29, 2.30, 2.31, 2.32, 3.8, 3.18-3.23,

3.24, 4.4, 4.7, 4.8, (at least) one element
of the families 2.24, 3.8 and 3.10 respec-
tively;



34 I. ARZHANTSEV, A. PEREPECHKO, AND H. SÜSS

d) 5.3-5.8;
e) (at least) one element of the family 2.26.

Proof. List a) is the same as 5). List b) are
exactly the toric Fano threefolds. The vari-
eties in c) admit a 2-torus action. This can
be seen more or less directly from the de-
scription given in [24]. For some of them we
get alternative proofs of the A-coveredness
by 3), 7) and 10). The varieties in d) are
products of del Pezzo surfaces (which are ra-
tional) and P1. The variety in e) is obtained
from V5 by blow up in linear subvariety as
explained in 10). �

5. Main results

The following theorem summarizes our re-
sults on universal torsors and infinite tran-
sitivity.

Theorem 3. Let X be an A-covered alge-
braic variety of dimension at least 2 and
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q : X̂ → X be the universal torsor. Then the
group SAut(X̂ ) acts on the quasiaffine variety
X̂ infinitely transitively.

Proof. If X is covered by m open charts iso-
morphic to An, and every chart is equipped
with n transversal cylinder structures, then
the covering of X by these mn cylinders is
transversal. By Proposition 3, the group
SAut(X̂ ) acts on X̂ transitively. Theorem 2
yields that the action is infinitely transi-
tive. �

Theorem 3 provides many examples of
quasiaffine varieties with rich symmetries.
In particular, if X is a del Pezzo surface, a
description of the universal torsor q : X̂ → X
may be found in [7], [27], [28]. It follows
from Theorem 3 that the group SAut(X̂ ) acts
on X̂ infinitely transitively.

If X is the blow up of nine points in gen-
eral position on P2, that it is well known
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that the Cox ring R(X ) is not finitely gen-
erated, and thus X̂ is a quasiaffine variety
with a non-finitely generated algebra of reg-
ular functions Γ(X̂ ,O). Theorem 3 works in
this case as well.

Theorem 4. Let X be an A-covered algebraic
variety of dimension at least 2. Assume that
the Cox ring R(X ) is finitely generated. Then
the total coordinate space X := Spec R(X ) is
a factorial affine variety, the group SAut(X )
acts on X with an open orbit O, and the action
of SAut(X ) on O is infinitely transitive.

Proof. Lemma 1 shows that the group Cl(X )
is finitely generated and free, hence the
ring R(X ) is a unique factorization domain,
see [4, Proposition I.4.1.5]. Since

Γ(X,O) = R(X ) � Γ(X̂ ,O),
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any Ga-action on X̂ extends to X . We con-
clude that X̂ is contained in one SAut(X )-
orbit O on X , the action of SAut(X ) on O
is infinitely transitive, and by [5, Proposi-
tion 1.3] the orbit O is open in X . �

Recall from [14] that the Makar-Limanov
invariant ML(Y ) of an affine variety Y is
the intersection of the kernels of all lo-
cally nilpotent derivations on Γ(Y,O). In
other words ML(Y ) is the subalgebra of all
SAut(Y )-invariants in Γ(Y,O). Similarly to
as in [23] the field Makar-Limanov invariant
FML(Y ) is the subfield of K(Y ) which con-
sists of all rational SAut(Y )-invariants. If the
field Makar-Limanov invariant is trivial, that
is, if FML(Y ) = K, then so is ML(Y ), but the
converse is not true in general.

Corollary 1. Under the assumptions of The-
orem 4 the field Makar-Limanov invariant
FML(X ) is trivial.
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Proof. By Theorem 4, the group SAut(X ) acts
on X with an open orbit. So any rational
SAut(X )-invariant is constant. �

Appendix: Rational T-varieties of
complexity one

By a T -variety we mean a normal variety
equipped with an effective action of an alge-
braic torus T . The difference of dimensions
dimX − dim T is called the complexity of a T -
variety. Hence, toric varieties are T -varieties
of complexity zero. For the case of complex-
ity one we want to prove the following theo-
rem.

Theorem 5. Any smooth complete rational
T-variety of complexity one is A-covered.

Due to [1] T -varieties can be described
and studied in the language of polyhedral
divisors. As for ordinary divisors we have
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to associate certain coefficients to codimen-
sion one subvarieties of some base variety
Y . But in our case the coefficients are not
integers or real numbers, but polyhedra in
some vector space.

Our general references are [1, 2, 3], but
we restrict ourself to the case of rational T-
varieties of complexity one. In the language
of polyhedral divisors this is equivalent to
the fact that our divisors live on P1. This
allows us to simplify some definitions.

The affine case. We consider a lattice M of
rank n, the dual lattice N = Hom(M,Z), and
the vector space NQ = N⊗ZQ. Let T = N⊗ZK∗

be the algebraic torus of dimension n with
character lattice M.

Every polyhedron ∆ ⊂ NQ has a Minkowski
decomposition ∆ = P + σ, where P is a (com-
pact) polytope and σ is a polyhedral cone.
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We call σ the tail cone of ∆ and denote it by
tail(∆).

A polyhedral divisor on P1 over N is a for-
mal sum

D =
∑
y∈P1

Dy · y,

where Dy are polyhedra with common
pointed tail cone σ and only finitely many
coefficients differ from σ itself. Note that we
allow empty coefficients. We set YD = {y ∈
P1 | Dy , ∅}.

We call D a proper polyhedral divisor or a
p-divisor for short, if

(3) degD :=
∑
y∈P1

Dy ( σ.

For every u ∈ M we may evaluate the p-
divisor and obtain a divisor on YD with coeffi-
cients in Q, namelyD(u) :=

∑
y min〈u,Dy〉·y.
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Now a p-divisor gives rise to a finitely gener-
ated M-graded K-algebra

A(D) =
⊕
u∈σ∨∩M

Γ(YD,O(D(u)))

=
⊕
u∈σ∨∩M

{f ∈ K(Y ) | ordy f ≥ − inf〈u,Dy〉}.

We obtain a normal rational affine variety
X(D) := SpecA(D) of dimension n + 1 with
a T -action induced by the M-grading. Ev-
ery such variety arises this way [1, Theo-
rems 3.1, 3.4].

Proposition 5. [3, Theorem 4] Let D be a
p-divisor.

1. For every y ∈ P1 choose a point vy ∈ N,
such that only finitely many of them
differ from 0 and

∑
y vy = 0. Then D

and D′ =
∑
y∈P1(Dy + vy) · y give rise to

isomorphic varieties.
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2. If ϕ ∈ Aut(P1) then D and ϕ∗D :=∑
yDϕ(y) · y give rise to isomorphic va-

rieties.

Example 2. We consider a polyhedral divi-
sor D on P1 having three polyhedral coef-
ficients D0, D1 and D∞ given in the first
three images. All other coefficients equal
the tail cone, which is spanned by (−1,−1)
and (1,−1). The polyhedral divisor is proper,
since the degree polyhedron is a proper sub-
set of the tail cone as the last picture shows.

0 1 deg

Example 3. [18, Remark 1.8.] Let us fix
two points y0, y∞ ∈ P1. For y ∈ P1 \ {y0, y∞}
we consider lattice points vy ∈ N such that
only finitely many of them are different from
0. We denote the sum

∑
y,y0,y∞ vy by v and

choose w0, w∞ ∈ N with w0 +w∞ = v.
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A polyhedral divisor of the form

(4) D0 · y0 + D∞ · y∞ +
∑
y

(vy + σ) · y

on P1 corresponds to the affine toric variety
of the cone in NQ ⊕ Q defined by cone(w0 +

D0, w∞+D∞) := Q≥0 ·
(
(w0 +D0)×{1} ∪ σ×

{0} ∪ (w∞ +D∞) × {−1}
)

together with the
subtorus action given by the lattice embed-
ding N ↪→ N ⊕ Z. Here, we allow D0 = ∅ or
D∞ = ∅. Different choices of w0 and w∞ lead
to cones which can be transformed into each
other by a lattice automorphism of N × Z.
Hence, the corresponding toric varieties are
isomorphic and the above statement makes
indeed sense. If the affine toric variety is
assumed to be smooth, the cone has to be
regular. If D0 or D∞ has dimension n, then
the constructed cone has dimension n + 1
and the variety is an affine space.
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We may look at the concrete polyhedral
divisor from Example 2. It has the desired
form: only D0 and D∞ are not lattice trans-
lates of the tail cone. The coefficient D1
is just the tail cone translated by (0,−1).
Hence, v = (0,−1) holds. We may choose
w0 = v and w∞ = 0. Now cone(w0 +D0, w∞+

D∞) is spanned by the rays Q≥0 · (−1,−1,1),
Q≥0 · (0,−1,1) and Q≥0 · (1,1,−2). Since the
ray generators form a basis in Z3, the corre-
sponding T -varieties is an affine space with
a 2-torus action.

It is not hard to exhibit in general the ex-
tremal rays of the cone constructed in Ex-
ample 3.

Lemma 5. There are three types of extremal
rays in cone(w0 +D0, w∞ +D∞):

1. ρ×{0} for every ρ ∈ σ(1), where degD∩
ρ = (w0 +w∞ +D0 +D∞) ∩ ρ = ∅;
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2. Q≥0 · (w0 + v,1), where v ∈ D0 is a
vertex;

3. Q≥0 · (w∞ + v,−1), where v ∈ D∞ is a
vertex.

Proposition 6. [30, Proposition 3.1 and
Theorem 3.3.] Let D be a p-divisor on P1.
Then X(D) is smooth if and only if

1. either degD , ∅, D is of the form (4),
and hence X(D) is an affine space, or

2. degD = ∅ and cone(Dy) := cone(Dy, ∅)
is regular for every y ∈ P1.

Note that polyhedral divisors of the second
type do not necessarily correspond to affine
spaces. This is only the case if at most two
coefficients are not lattice translates of the
tail cone, see Example 3.

As a consequence of Lemma 5 and Propo-
sition 6 we easily obtain that for two special
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cases all coefficients of D have to be trans-
lated cones in order to obtain a smooth affine
variety.

Corollary 2. Assume that X(D) is smooth. If
D has a tail cone σ of maximal dimension and
degD ∩ τ = ∅ for some facet τ ≺ σ, then all
the coefficients are translates of σ and all but
two are even lattice translates.

Corollary 3. If degD = ∅ and X(D) is
smooth, then the tail cone σ has to be reg-
ular. Moreover, if σ is maximal, then Dy is
either empty or a lattice translate of σ for ev-
ery y ∈ P1.

Complete case and affine coverings.
Given two p-divisors D′ and D such that
D′y ⊂ Dy we obtain an inclusion of algebras
A(D) ⊂ A(D′) and a dominant morphism of
affine varieties X(D′)→ X(D). If the latter is
an open inclusion we write D′ ≺ D. For two



INFINITE TRANSITIVITY ON UNIVERSAL TORSORS 47

p-divisorsD andD′ we define their intersec-
tion asD∩D′ :=

∑
y(Dy∩D

′
y)·y. This is again

a p-divisor. IfD � D∩D′ ≺ D′ holds we may
glue X(D) and X(D′) via the induced open in-
clusions of X(D ∩D′). More generally, from
a finite set S of p-divisors fulfilling pairwise
the condition D � D ∩ D′ ≺ D′ we obtain a
scheme by gluing the affine pieces via identi-
fication of common open affine subsets, see
[2, Theorem 5.3].

The other way around, for every T -variety
X we may consider a T -invariant covering by
affine varieties X(D) for p-divisors D from a
finite set S as above [2, Theorem 5.6]. In
the case of rational T -varieties of complex-
ity one the relation D′ ≺ D can be char-
acterized explicitly: D′ ≺ D if and only if
D′y is a face of Dy for every y ∈ P1 and
degD′ = degD∩ tailD′, see [19, Proposition
1.1]. Together with [2, Remark 7.4(iv)] this



48 I. ARZHANTSEV, A. PEREPECHKO, AND H. SÜSS

implies that a set S as above satisfies the
following compatibility conditions.

Slice rule: The slices Sy = {Dy | D ∈ S}

are complete polyhedral subdivisions
of NQ, i.e. they cover NQ and the in-
tersection of every two polyhedra is a
face of both of them.

Degree rule: For τ = (tailD) ∩ (tailD′)
one has τ ∩ (degD) = τ ∩ (degD′).

Note that tailS := {tailD | D ∈ S} generates
a fan and all but finitely many slices Sy just
equal tailS. Consider a maximal tail cone σ
in tailS. Then for every y there is a unique
polyhedron Sy(σ) in Sy having this tail.

A maximal cone σ ∈ tailS is called marked
if the corresponding polyhedral divisor D
with σ = tailD fulfills degD , ∅. We de-
note the set of all marked cones by tailm(S) ⊂
tail(S).
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In general, there are many torus invariant
affine coverings of X . But by [19, Proposi-
tion 1.6] every rational complete T -variety
of complexity one is uniquely determined
by the slices Sy and the markings in tailS.
Hence, another set S′ of p-divisors with
Sy = S′y for all y ∈ P1 and tailm(S) = tailm(S′)
corresponds to another invariant affine cov-
ering of the same variety.

Example 4. We consider the blow up of the
quadric threefold Q in one point. This is a
T -variety of complexity one and the slices of
a set S look as in the first three pictures.
The last picture shows the degrees of the el-
ements of S.

0 1 deg

>From now on we assume that X is a ratio-
nal complete smooth T-variety of complexity
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one and we consider an affine covering given
by the p-divisors in S. By Proposition 6, we
have

Lemma 6. Given a maximal cone σ in tailS,
there are two possible cases:

1. σ is marked and all but two coefficients
of Sy(σ) are lattice translates of σ, or

2. σ is not marked; then it has to be regu-
lar and Sy(σ) has to be a lattice trans-
late of σ for every y ∈ P1.

In the slices Sy there might occur maxi-
mal polyhedra with non-maximal tail cones,
as t := (−1,0)(0,0) + Q≥0 · (0,1) in the first
slice in Example 4. Here, Lemma 6 does not
apply. Instead we need the following crucial
fact.

Proposition 7. Let P be a maximal polyhe-
dron with non-maximal tail in Sz for some
z ∈ P1. Then up to one exception z′ ∈ P1
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there is a lattice translate of tail(P) in Sy, for
every y , z.

Proof. We denote the tail cone of P by τ. Con-
sider the part R of Sz consisting of all maxi-
mal polyhedra with tail τ. We are looking at
the boundary facets of this part. There is a
facet having tail τ, it corresponds to a prim-
itive lattice element u ∈ τ⊥, which is mini-
mized on this facet. On the other side of the
facet we have a neighboring full-dimensional
polyhedron P ′ having a tail cone τ′ � τ. Re-
placing P by P ′ and iterating this procedure,
we end up with a maximal polyhedron P,
a non-maximal tail cone τ = tail P, a re-
gion R of Sz, and a facet of R minimizing
some u ∈ τ⊥ (which necessarily has tail cone
τ) such that the neighboring polyhedron ∆+

has full-dimensional tail σ+. Now, we treat
two cases separately: 1) dim τ < n −1 and 2)
dim τ = n − 1.
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In the first case, the common facet of ∆+

and R has dimension n − 1, but tail cone τ
of dimension less than n − 1. This implies
that the facet and, hence, ∆+ has at least
n − dim τ > 1 vertices. In particular, it is not
a lattice translate of a cone and by Lemma 6
the tail cone σ+ has to be marked. Again by
Lemma 6 for y , z all but one of the Sy(σ+)
are lattice translate of σ+. Hence, the faces
of these Sy(σ+) with tail cone τ are indeed
lattice translates of τ and the claim is proved.

In the second case, −u is minimized on
another facet of R. For the neighboring
full-dimensional polyhedron ∆− we have τ ≺
σ− := tail ∆−. Since τ is of dimension n − 1,
the cone σ− must be full-dimensional. By
construction σ+ ∩ σ− = τ. Assume that σ+ is
not marked. Then all polyhedra Sy(σ+) ∈ Sy
are lattice translations of σ+. As before, we
infer that the claim is fulfilled in this case.
The same applies if σ− is not marked.
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Now assume that both σ+ and σ− are
marked. There are p-divisors in D+,D− ∈ S
with tailD± = σ± and degD± , ∅. If ∆± = D±z
is not a lattice translate, then we know that
all other polyhedra D±y are lattice translates
of σ± up to one exception. Hence, every D±y
up to one exception contains a lattice trans-
lation of τ ≺ σ± and the claim follows. Hence,
we may assume that D+

z , D−z are just lattice
translates of the cone σ+ and σ− respectively.

Remember that we have a maximal poly-
hedron P ∈ Sz with non-maximal tail cone τ.
Hence, there is some p-divisorD(P) ∈ S with
D(P)z = P. By the properness condition (3)
we have degD(P) = ∅ and by the degree rule
we have τ ∩ degD± = ∅. Now, by Corol-
lary 2 we know that all D±y are just trans-
lated cones (v±y + σ±). Moreover, up to two
exceptions D±y0

= (v±0 + σ) and D±y∞ = (v±∞ + σ)
they are even lattice translates, i.e. v±y ∈ N .
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Corollary 3 ensures that τ is a regular
cone. Hence, the primitive ray generators
e1, . . . en−1 of τ form a part of a basis e1, . . . en
of N . Since u ∈ τ⊥ we have 〈u, en〉 = 1. Now,
the elements (ei ,0) together with (0,1) form
a basis of N × Z. We use this basis for an
identification N × Z � Zn+1. In particular,
〈u, ·〉 equals to the n-th coordinate in this
basis.

By Lemma 5, the primitive ray generators
of cone(w±0 +D±y0

, w±∞+D±y∞) (as in Example 3)
are given by the columns of the following
matrix. Due to the smoothness condition
these matrices have to be unimodular.
There first n − 1 columns correspond to
the rays of τ and the last two columns
to the vertex in Dy0 and Dy∞, respectively.

M± =


1 ∗ ∗

. . .
...

...
1 ∗ ∗

0 · · · 0 〈v±∞ +w±∞, u〉 〈v
±
∞ +w±∞, u〉

0 · · · 0 µ±0 −µ±∞


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Here, µ±0 , µ±∞ are minimal positive inte-
gers such that µ±0 · v

±
0 and µ±∞ · v

±
∞ are lat-

tice elements. By the slice rule, we have
〈u, v+

y 〉 ≥ 〈u, v
−
y 〉 (else (v+

y + σ+) and (v−y + σ−)
would intersect in a non-face, since τ = σ+ ∩

u⊥ = σ− ∩ u⊥ is a common facet). Moreover,
〈v+
z , u〉 > 〈v

−
z , u〉 holds, since ∆+ = (v+

z + σ+)
and ∆− = (v−z + σ−) are separated by the
full-dimensional region R. Note that the
compared values are integers. Let us set
Σ± =

∑
y v
±
y . By definition, we have v± =

Σ± − v±0 − v
±
∞. We obtain 〈Σ+, u〉 ≥ 〈Σ−, u〉 + 1.

We choose w+
0 in a way such that 0 ≤

〈v+
0 +w+

0 , u〉 < 1 holds and set w+
∞ = v+ −w+

0 ,
w−∞ = w+

∞ − bv
−
∞ − v+

∞c (componentwise
rounding) and w−0 = v− − w−∞. Hence,
we obtain 〈v−∞ + w−∞, u〉 ≤ 〈v

+
∞ + w+

∞, u〉 and
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v−0 +w−0 = v−0 + v− −w−∞ = Σ− − v−∞ −w
−
∞

= Σ− − v−∞ −w
+
∞ + bv−∞ − v

+
∞c

= Σ− − v−∞ − v
+ +w+

0 + bv−∞ − v
+
∞c

= Σ− − v−∞ − Σ+ + v+
0 + v+

∞ +w+
0 + bv−∞ − v

+
∞c

= w+
0 + v+

0 + (Σ− − Σ+) +
(
bv−∞ − v

+
∞c − (v−∞ − v

+
∞)

)
.

After pairing with u we obtain
〈v−0 + w−0 , u〉 ≤ 〈w+

0 + v+
0 , u〉 − 1 < 0.

Hence, either 〈v+
0 + w+

0 , u〉, 〈v
+
∞ + w+

∞, u〉 ≥ 0
or 〈v−0 + w−0 , u〉, 〈v

−
∞ + w−∞, u〉 ≤ 0. In both

cases we need to have either µ±0 = 1 or
µ±∞ = 1 in order to obtain | detM±| = 1. All
but one coefficient ofD+ orD−, respectively,
are lattice translates. Since τ is a face of σ±
we will always find a lattice translate of τ as
well, and Proposition 7 is proved. �

Proof of Theorem 5. Consider a set S of p-
divisors giving rise to a covering of X as
above. We construct another set of p-
divisors S′ giving rise to an A-covering of X .

Let σ be a marked maximal cone in tailS.
There is a D ∈ S with degD , ∅ and tailD =
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σ. We simply add it to S′. By Lemma 6,
X(D) is an affine space. If σ is maximal but
not marked, then by Lemma 6 the polyhedra
Sy(σ) are just lattice translates of σ. Now, we
add the following two polyhedral divisors to
S′:

D0 = ∅ · 0 +
∑
y,0

Sy(σ) · y,

D∞ = ∅ · ∞ +
∑
y,∞

Sy(σ) · y.

From Example 3 we know that X(D0) and
X(D∞) are both affine spaces.

By these considerations S′y covers all poly-
hedra from Sy having maximal tail cones.
Moreover, the markings are the same as for
S. It remains to care for maximal polyhedra
P having non-maximal tail τ. We consider
such a polyhedron living in some slice Sz.
By Proposition 7, we have a lattice trans-
late (vy + τ) in every slice except for Sz and
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Sz′. Having this, we can add the p-divisor
D(P) = ∅·z′+P ·z+

∑
y,z,z′(vy+τ)·y to S′. Thus

for all maximal polyhedra with non-maximal
tail we obtain Sy = S′y for all y ∈ P1. From
Example 3 we know that X(D(P)) are affine
spaces. Hence, we obtain an A-covering
of X . �

Example 5. Let us illustrate the proof for
the slices in Example 4. Here all the maxi-
mal tail cones are marked. Hence, S′ con-
tains a p-divisor of non-empty degree for ev-
ery maximal tail cone. The polyhedral co-
efficient can be read off directly from the
pictures. There remains a single maximal
polyhedron t with tail cone Q≥0 · (0,1). For
u = (1,0) we find facets minimizing u and
−u, respectively. The neighboring maximal
polyhedra are just lattice translates of max-
imal tail cones, which are marked in our
case. As stated in the proof, there is only one
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slice, where we do not find a lattice trans-
lates of one of the tail cones. This is the
∞-slice on the picture. Hence, we may add
the p-divisor t ⊗ 0 + ∅ ⊗ ∞ to S′. By Exam-
ple 3, this p-divisor corresponds to an affine
space. Moreover, the slices of S′ equal the
given ones. Hence, we constructed a cover-
ing of the blow up of the quadric by six affine
spaces.
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