In-class problems: Week 2

1. Prove that any two closed intervals $[a_1, b_1] = \{x \in \mathbb{R} \mid a_1 \leq x \leq b_1\}$ and $[a_2, b_2]$ (where $a_i < b_i$) are homeomorphic by writing down the formula for a homeomorphism.

2. Let S^n denote the unit sphere in \mathbb{R}^{n+1} with centre the origin

$$S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid |\mathbf{x}| = 1 \}$$

and D^n denote the closed unit ball in \mathbb{R}^n centre the origin

$$\mathbb{D}^n = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x}| \leq 1 \}.$$

Prove that the closed semicircle $\{\mathbf{x} \in S^1 \mid x_2 \ge 0\}$ is homeomorphic to the closed interval [-1, 1]. More generally, prove that the closed hemisphere $\{\mathbf{x} \in S^n \mid x_{n+1} \ge 0\}$ is homeomorphic to the closed ball \mathbb{D}^n .

3. How does path-connectedness behave under the set operations \cup , \cap and \times ? For $X, Y \subset \mathbb{R}^n$ does one of the statements below imply the other?

- (a) X and Y are both path-connected.
- (b) $X \Box Y$ is path-connected.

Here, \Box stands for one of the operations \cup , \cap and \times .

4. Use a cut-point argument to show that the three intervals [0,1], (0,1) and [0,1) are topologically distinct (i.e. no two are homeomorphic).