In-class problems: Week 6

- 1. Proof that a topological space with discrete topology is Hausdorff. What about the indiscrete topology?
- **2.** Wich of the following topologies on \mathbb{R} are Hausdorff?
- (a) the subsets of \mathbb{R} whose complements are finite and \mathbb{R} and \emptyset ;
- (b) all subsets of the form $(a, \infty) = \{ x \in \mathbb{R} \mid x > a \}$ and \mathbb{R} and \emptyset ;
- (c) all subsets $U \subset \mathbb{R}$ such that $0 \in U$ and \emptyset ;
- (d) all subsets $U \subset \mathbb{R}$ such that $0 \notin U$ and \mathbb{R} .
- **3.** (a) Show that singletons are closed in a Hausdorff space. [*Hint: write* $X \setminus \{x\}$ as a union of open subsets.]
- (b) Show that a finite Hausdorff space is discrete.

[Hint: Show that every subset is closed (this implies every subset is open).]