
MATH31052 Topology

�0a Background material on group theory

The second part of the course on the fundamental group makes some use of
group theory. For convenience I have summarized the basic ideas which I
shall need. I hope that this summary will be su�cient for the few students
taking the course who have not encountered group theory before.

0.24 De�nition. A group is a non-empty set G together with a function
G × G → G (a binary operation) written (g1, g2) 7→ g1 · g2 which has the
following properties.

� It is associative which means that (g1 · g2) · g3 = g1 · (g2 · g3) for all
g1, g2, g3 ∈ G.

� It has an identity which means that there is a (unique) element
e ∈ G such that g · e = g = e · g for all g ∈ G.

� Inverses exist which means that for each element g ∈ G there is a
(unique) element g′ such that g · g′ = e = g′ · g.

A group is said to be abelian if the binary operation has the following addi-
tional property.

� It is commutative which means that g1 · g2 = g2 · g1 for all

0.25 Examples. (a) The integers Z, the rationals Q and the real numbers
R each is an abelian group under addition (a, b) 7→ a+ b. The unit is 0 and
the inverse of an element a is −a.

(b) The integers Z, the rationals Q and the real numbers R are not groups
under multiplication (a, b) 7→ a×b = ab. This binary operation is associative
and commutative, 1 is the identity but not every element has an inverse: in
Z only the elements ±1 have an inverse; in Q and R every non-zero element
a has an inverse a−1 but 0 does not have an inverse.

(c) The non-zero rationals Q∗ and the non-zero real numbers R∗ are abelian
groups under multiplication.

(d) The binary operation given by subtraction (a, b) 7→ a−b on the integers Z
is not associative, doesn't have a unit (so that there is no idea of an inverse)
and is not commutative.
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(e) The set of n× n non-singular (invertible) matrices is a group, known as
the general linear group under multiplication. The unit is the identity matrix
and the inverse is given by the usual matrix inverse.

(f) The set of congruence classes of integers modulo n, Zn, is an abelian
group under addition (see Eccles, Chapter 21 for this set and the de�nition
of addition).

0.26 Remarks. (a) If a binary operation has a unit then it is necessarily
unique for, given units e1 and e2, then e1 = e1 · e2 (since e2 is a unit) = e2
(since e1 is a unit).

(b) Given a set G with binary operation with a unit, if an element g ∈ G
has in inverse then it is necessarily unique since, given inverses g′ and g′′,
g′ = g′ · e = g′ · (g · g′′) = (g′ · g) · g′′ = e · g′′ = g′′.

(c) Associativity means that we can write compositions of more than ele-
ments without brackets: in a group the expression g1 · g2 · g3 is unambiguous
since (g1 · g2) · g3 = g1 · (g2 · g3).
(d) Notations like (g1, g2) 7→ g1 · g2 or g1 ∗ g2 are usually used initially when
discussing a general binary operation. In practice when discussing groups the
binary operation is often called the product or multiplication (represented
by (g1, G2) 7→ g1 × g2 or just g1g2 with the identity either denoted either e
or 1 and the inverse of g denoted g−1) or if the group is abelian it is called
the sum or addition (represented by (g1, g2) 7→ g1+ g2 with identity denoted
either e or 0 and the inverse of g denoted −g). The notes for the course use
the product notation.

0.27 De�nition. A function f : G1 → G2 between two groups is called a
homomorphism if f(g1g2) = f(g1)f(g2) for each g1, g2 ∈ G.

An injection f : G1 → G2 which is a homomorphism is called a monomor-

phism.

A surjection f : G1 → G2 which is a homomorphism is called an epimor-

phism.

A bijection f : G1 → G2 which is a homomorphism is called an isomorphism.
If there is an isomorphism between two groups G and G2 then we say that
they are isomorphic and write G1

∼= G2.

0.28 Proposition. (a) If f : G1 → G2 is a homomorphism of groups then,
if e1 is the identity element of G1, f(e1) is the identity element of G2 and,
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for g ∈ G1, f(g
−1) is the inverse of f(g) in G2.

(b) Given homomorphisms of groups f1 : G1 → G2 and f2 : G2 → G3, then
the composition f2 ◦ f1 : G1 → G3 is a homomorphism.

(c) If f : G1 → G2 is an isomorphism of groups then the inverse map
f−1 : G2 → G1 is a homomorphism (and so an isomorphism).

Proof. (a) Write ei for the unit of Gi (i = 1, 2). Since e1e1 = e1 it follows
that f(e1)f(e1) = f(e1). Hence f(e1) = f(e1)e2 = f(e1)f(e1)f(e1)

−1 =
f(e1)f(e1)

−1 = e2.
For g ∈ G, f(g)f(g−1) = f(gg−1) = f(e1) = e2 and, similarly, f(g−1)f(g) =
e2 so that f(g−1) = f(g)−1.

(b) For g1, g2 ∈ G, (f2◦f1)(g1g2) = f2
(
f1(g1g2)

)
= f2

(
f1(g1)f1(g2)

)
(since f1

is a homomorphism) = f2
(
f1(g1)

)
f2
(
f1(g2)

)
(since f2 is a homomorphism)

= (f2 ◦ f1)(g1)(f2 ◦ f1)(g2). Hence f2 ◦ f1 is a homomorphism.

(c) Given h1, h2 ∈ G2, since f is a bijection hi = f(gi) for a unique gi ∈ G1

(i = 1, 2). Then f−1(hi) = gi. Since f(g1g2) = f(g1)f(g2) = h1h2 and f is a
bijection, f−1(h1)f

−1(h2) = g1g2 = f−1(h1h2) as required to prove that f−1

is a homomorphism. Since it is also a bijection (the inverse of a bijection) it
is an isomorphism. �

0.29 De�nition. Given a group G a subset H ⊂ G is a subgroup of G if it
is a group under the restriction of the binary operation on G to H.

0.30 Examples. (a) The additive group of the integers Z is a subgroup of
the additive group of the rationals Q.

(b) The even integers form a subgroup of the additive group of the integers.

(c) The singleton subset of G consisting of the identity {e} is a subgroup of
G called the trivial subgroup. This subgroup is denoted by I.

0.31 De�nition. Given a homomorphism of groups f : G1 → G2, the
kernel of f is de�ned by ker(f) = { g ∈ G1 | f(g) = e } where e is the
identity element of G2.

0.32 Proposition. (a) The kernel ker(f) of a group homomorphism f : G1 →
G2 is a subgroup of G1.

(b) A group homomorphism f : G1 → G2 is a monomorphism if and only if
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ker(f) = I, the trivial subgroup of G1.

Proof. (a) This is a simple check. [In what follows the identity elements of
G1 and G2 are each denoted e as is usual. It is clear from the context which
identity element is meant.] Given g1, g2 ∈ ker(f), f(g1g2) = f(g1)f(g2) =
ee = e and so g1g2 ∈ ker(f). Since f(e) = e, it follows that e ∈ ker(f) and,
for g ∈ ker(f), f(g−1) = f(g)−1 = e−1 = e and so the inverse g−1 ∈ ker(f).
Hence ker(f) is a subgroup of G1.

(b) Since f(e) = e, if f is a monomorphism and so an injection then ker(f) =
{e} = I. Conversely, if ker(f) = I, then given g1, g2 ∈ G1 such that
f(g1) = f(g2) it follows that f(g1g

−1
2 ) = f(g1)f(g

−1
2 ) = f(g2)f(g2)

−1 = e
and so g1g

−1
2 ∈ ker(f) which means that g1g

−1
2 = e giving g1 = g2 proving

that f is an injection and so a monomorphism. �

0.33 Proposition. Given groups G and H, a group structure may be put
onto the cartesian product G×H by (g1, h1)(g2, h2) = (g1g2, h1h2).

Proof. It is straightforward to check the conditions. The identity is given
by (e, e) and the inverse of (g, h) is given by (g−1, h−1). �
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