
Spring Semester 2019–2020

MATH31052 Topology

1 Topological Equivalence and Path-Connectedness

1.1 Definition. Suppose that X and Y are subsets of Euclidean spaces. A
function f : X → Y is a topological equivalence or a homeomorphism if it is
a continuous bijection such that the inverse f−1 : Y → X is also continuous.
If such a homeomorphism exists then X and Y are topologically equivalent
or homeomorphic, written X ∼= Y .

1.2 Example. (a) The real line R and the open half line (0,∞) = {x ∈
R | x > 0 } are homeomorphic. A homeomorphism is given by exp: R→
(0,∞) with inverse loge : (0,∞)→ R.

(b) X = R2 \ {0}, the punctured plane, and Y = {x = (x1, x2, x3) ∈ R3 |
x21 + x22 = 1 }, the infinite cylinder, are homeomorphic. A homeomor-
phism f : X → Y is given by

f(x1, x2) =
(
x1/|x|, x2/|x|, loge(|x|)

)
with inverse g : Y → X given by

g(y1, y2, y3) = ey3(y1, y2).

1.3 Exercise. (a) The punctured plane, X = R2\{0}, is homeomorphic
to the complement of the unit disc, Z = {x ∈ R2 | |x| > 1 } = R2 \D2

where D2 = {x ∈ R2 | |x| 6 1 }.

(b) S1 = {x ∈ R2 | |x| = 1 }, the unit circle, and T = {x = (x1, x2) ∈
R2 | |x1|+ |x2| = 1 }, the diagonal square, are homeomorphic.

1.4 Problem. We prove that two subsets are homeomorphic by writ-
ing down a homeomorphism. How can we prove that two subsets are not
homeomorphic?

1.5 Definition. A property P of subsets of Euclidean spaces is a topological
property when, if X and Y are homeomorphic subsets, then X has property
P if and only if Y has property P .

Thus, if X has property P and Y does not have property P then X and Y
are not homeomorphic.
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Path-connected subsets of Euclidean space

1.6 Definition. (a) Let X be a subset of some Euclidean space. A path
in X is a continuous function σ : [0, 1] → X where [0, 1] = { t ∈ R |
0 6 t 6 1 }. The point σ(0) is the beginning point of the path and the
point σ(1) is the terminal point of the path. We say that σ is a path
in X from σ(0) to σ(1).

(b) The subset X is said to be path-connected if, for each pair of points x,
x′ ∈ X, there is a path in X from x to x′.

1.7 Proposition. The closed unit ball (or disc) Dn = {x ∈ Rn | |x| 6 1 }
in Rn is path-connected.

Proof. Given x,x′ ∈ Dn define σ : [0, 1]→ Rn by

σ(s) = x + s(x′ − x) = (1− s)x + sx′

for s ∈ [0, 1]. Then σ is continuous, σ(0) = x and σ(1) = x′ so σ is a path
in Rn from x to x′.
However, for 0 6 s 6 1, |σ(s)| = |(1 − s)x + sx′| 6 |(1 − s)x| + |sx′| (by
the triangle inequality) = (1 − s)|x| + s|x′| (since s > 0 and 1 − s > 0)
6 (1− s) + s (since x, x′ ∈ Dn) = 1, i.e. |σ(s)| 6 1. Hence σ(s) ∈ Dn and
so σ : [0, 1]→ Dn is a path in Dn from x to x′.
Hence Dn is path-connected.

1.8 Exercise. The unit circle S1 in R2 is path-connected.

1.9 Theorem. Let f : X → Y be a continuous surjection where X and Y
are subsets of Euclidean spaces. Then, if X is path-connected, so is Y .

Proof. Exercise.

1.10 Corollary. Path-connectedness is a topological property.

Proof. Suppose thatX and Y are homeomorphic subsets of Euclidean spaces.
Then there is a homeomorphism f : X → Y . Then if X is path-connected
so is Y by the Theorem since f is a continuous surjection. Conversely, if
Y is path-connected then so is X since f−1 : Y → X is a continuous sur-
jection. Thus, X is path-connected if and only if Y is path-connected as
required.

1.11 Proposition. The subset R \ {0} is not path-connected and so R \
{0} 6∼= S1.
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Proof. This is true because there is no path in R \ {0} from −1 to 1. This
may be proved by contradiction. Suppose. for contradiction, that σ : [0, 1]→
R \ {0} is a path from −1 to 1 so that σ(0) = −1 and σ(1) = 1. Then
i◦σ : [0, 1]→ R\{0} → R is a continuous function with values −1 and 1 for
which 0 is not a value. This contradicts the intermediate value property of
the function σ (Theorem 0.23(b) in the Background Material) since −1 <
0 < 1 and so gives the necessary contradiction. Hence σ cannot exist, as
required and so R \ {0} is not path-connected. It follows that R \ {0} 6∼= S1

since S1 is path-connected and path-connectedness is a topological property.

1.12 Problem. Are S1 and [0, 1) homeomorphic? There is a continuous
bijection f : [0, 1)→ S1 defined by f(x) = (cos 2πx, sin 2πx).
More generally, is S1 homeomorphic to any subset of R?
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Path-components

1.13 Definition. Suppose that X is a subset of a Euclidean space.

(a) Given x ∈ X, we may define a path εx : [0, 1]→ X by

εx(s) = x for 0 6 s 6 1.

This is called the constant path at x.

(b) Given a path σ : [0, 1]→ X in X we may define a path

σ(s) = σ(1− s) for 0 6 s 6 1.

This is called the reverse path of σ and is a path from σ(1) to σ(0).

(c) Given paths σ1 : [0, 1]→ X and σ2 : [0, 1]→ X in X such that σ1(1) =
σ2(0) we may define a path σ1 ∗ σ2 : [0, 1]→ X by

σ1 ∗ σ2(s) =

{
σ1(2s) for 0 6 s 6 1/2,
σ2(2s− 1) for 1/2 6 s 6 1.

This is called the product of the paths σ1 and σ2 and is a path from
σ1(0) to σ2(1).

[Note that σ1∗σ2 is well-defined and continuous at t = 1/2 by the conditions
on σ1 and σ2.]

1.14 Proposition. Given X, a subset of a Euclidean space, we may define
an equivalence relation on X as follows: for x, x′ ∈ X, x ∼ x′ if and only if
there is a path in X from x to x′.

Proof. We check the conditions for an equivalence relation (Definition 0.15).
The reflexive property. For each point x ∈ X, x ∼ x using the constant
path εx.
The symmetric property. Suppose that x and x′ ∈ X such that x ∼ x′.
Then there is a path σ in X from x to x′. The reverse path σ is then a path
in X from x′ to x and so x′ ∼ x as requirec.
The transitive property. Suppose that x, x′ and x′′ ∈ X such that x ∼ x′

and x′ ∼ x′′. This means that there is a paths σ1 in X from x to x′ and a
path σ2 in X from x′ to x′′. Then the product path σ1 ∗ σ2 is a path in X
from x to x′′ and so x ∼ x′′ as required.
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1.15 Definition. Given X, a subset of a Euclidean space, the equivalence
classes of the equivalence relation in Proposition 1.14 are called the path-
components of X. We write π0(X) for the set of path-components of X and
[x] for the path-component of a point x ∈ X.

1.16 Example. π0(R \ {0}) = {(−∞, 0), (0,∞)}.

1.17 Proposition. Homeomorphic sets have the same number of path-
components.

Proof. Suppose thatX and Y are homeomorphic subsets of Euclidean spaces.
Then there is a homeomorphism f : X → Y . It it will be shown that this con-
tinuous function induces a bijection f∗ : π0(X)→ π0(Y ) by f∗([x]) = [f(x)].
This implies that π0(X) and π0(Y ) have the same cardinality which is what
we have prove.
The function f∗ is well-defined because, if [x] = [x′] then x ∼ x′ and so there
is a path σ : [0, 1]→ X in X from x to x′. It follows that f ◦σ : [0, 1]→ X →
Y is a path in Y from f(x) to f(x′) and so f(x) ∼ f(x′), i.e. [f(x)] = [f(x′)].
The function f∗ is a bijection since it is easily checked that (f−1)∗ : π0(Y )→
π0(X), the function induced by the inverse f−1 : Y → X, is an inverse for
f∗ (Exercise). �

Cut-points in subsets of Euclidean space

1.18 Definition. Suppose that X is a subset of some Euclidean space.
Then a point p ∈ X is called a cut-point of type n of X or an n-point of X
if its complement X \ {p} has n path-components.

1.19 Example. (a) In [0, 1) each x ∈ (0, 1) is a 2-point and 0 is a 1-
point.

(b) In the subset of R2 given by the coordinate axes, { (x1, x2) ∈ R2 | x1 =
0 or x2 = 0 }, (0, 0) is a 4-point whereas all other points are 2-points.

(c) In S1 every point is a 1-point.

1.20 Theorem. Homeomorphic sets have the same number of cut-points
of each type.

Proof. Let X and Y be homeomorphic subsets of Euclidean spaces. Then
there is a homeomophism f : X → Y . Suppose that p ∈ X is an n-point of
X. Then f induces a homeomorphism X \ {p} → Y \ {f(p)} and so these
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subsets have the same number of path-components by Proposition 1.17.
Hence f(p) is an n-point of Y .
This shows that f induces a bijection between the n-points of X and the
n-points of Y and so they must have the same number of n-points.

1.21 Example. [0, 1) and S1 are not homeomorphic since [0, 1) has some
2-points (all of its points apart from 0) whereas S1 has none.

Other applications of path-connectness

1.22 Theorem (The Brouwer Fixed Point Theorem in dimension
1). Suppose that f : [−1, 1] → [−1, 1] is a continuous map. Then f has a
fixed point, i.e. there exists a point t ∈ [−1, 1] such that f(t) = t.

Proof. Suppose for contradiction that f does not have a fixed point. Then
f(t) 6= t for all t ∈ [−1, 1]. Thus we may define a function g : [−1, 1] →
{−1, 1} by g(t) = (f(t) − t)/|f(t) − t|. This is a continuous function from
basic real analysis. However, since f(−1) > −1 and f(1) < 1 it follows that
g(−1) = 1 and g(1) = −1. Hence g is a surjection. Hence, by Proposi-
tion 1.9, {−1, 1} path-connected which contradicts the Intermediate Value
Theorem (as in the proof of Proposition 1.11). Hence f has a fixed point.

1.23 Theorem (The Borsuk-Ulam Theorem in dimension 1). Sup-
pose that f : S1 → R is a continuous function. Then there is a point x ∈ S1

such that f(x) = f(−x).

Proof. Exercise. Try a similar proof to that of Theorem 1.22.

1.24 Definition. A subset A ⊂ Rn is bounded if there is a real number R
such that x ∈ A =⇒ |x| 6 R.

1.24 Theorem (The Pancake Theorem). Let A and B be bounded
subsets of R2. Then there is a (straight) line in R2 which divides each of A
and B in half by area.

Remark. The statement of this result assumes that A and B each have a
well-defined area. In this course we ignore the technical difficulties associated
with defining the area of a subset of R2 (the subject of integration and
measure theory).

Outline Proof. Since A and B are bounded there is a real number R such
that a ∈ A⇒ |a| 6 R and x ∈ B ⇒ |x| 6 R.
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Suppose that x ∈ S1. For t ∈ [−R,R] let Lx,t denote the straight line
through tx perpendicular to x. Let v(t) ∈ [0, 1] be the proportion of the
area of A on the same side of Lx,t as Rx. Then v : [−R,R] → [0, 1] is a
continuous decreasing function with v(−R) = 1 and v(R) = 0. By the
Intermediate Value Theorem there exists t ∈ [−R,R] such that v(t) = 1/2.
This t may not be unique but it is not difficult to show that v−1(1/2) = { t |
v(t) = 1/2 } = [α, β], a closed interval. Let fA(x) = (α + β)/2. Then the
line Lx,fA(x) bisects A.
The function fA : S1 → R can be shown to be continuous. Furthermore
fA(−x) = −fA(x) (since Lx,fA(x) and Lx,fA(−x) are the same line so that
fA(x)x = fA(−x)(−x)).
Similarly, using the region B, we may define a continuous function fB : S1 →
R such that fB(−x). = −fB(x) and Lx,fB(x) bisects B.
Let the continuous function f : S1 → R be given by f(x) = fA(x)− fB(x).
By the Borsuk-Ulam Theorem, there exists x0 ∈ S1 such that f(x0) =
f(−x0). But f(−x0) = fA(−x0)− fB(−x0) = −fA(x0) + fB(x0) = −f(x0).
Hence f(x0) = −f(x0) so that f(x0) = 0. This means that fA(x0) −
fB(x0) = 0 so that fA(x0) = fB(x0).
From the definition of fA and fB it follows that the line Lx0,fA(x0) =
Lx0,fB(x0) bisects both of A and B and so is the line whose existence is
the claim of the theorem.
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