MATH31052 Topology

1 Topological Equivalence and Path-Connectedness

1.1 Definition. Suppose that X and Y are subsets of Euclidean spaces. A function $f: X \to Y$ is a topological equivalence or a homeomorphism if it is a continuous bijection such that the inverse $f^{-1}: Y \to X$ is also continuous. If such a homeomorphism exists then X and Y are topologically equivalent or homeomorphic, written $X \cong Y$.

- **1.2 Example.** (a) The real line \mathbb{R} and the open half line $(0, \infty) = \{x \in \mathbb{R} \mid x > 0\}$ are homeomorphic. A homeomorphism is given by exp: $\mathbb{R} \to (0, \infty)$ with inverse $\log_e : (0, \infty) \to \mathbb{R}$.
- (b) $X = \mathbb{R}^2 \setminus \{\mathbf{0}\}$, the punctured plane, and $Y = \{\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 = 1\}$, the infinite cylinder, are homeomorphic. A homeomorphism $f: X \to Y$ is given by

$$f(x_1, x_2) = (x_1/|\mathbf{x}|, x_2/|\mathbf{x}|, \log_e(|\mathbf{x}|))$$

with inverse $g: Y \to X$ given by

$$g(y_1, y_2, y_3) = e^{y_3}(y_1, y_2).$$

- **1.3 Exercise.** (a) The punctured plane, $X = \mathbb{R}^2 \setminus \{\mathbf{0}\}$, is homeomorphic to the complement of the unit disc, $Z = \{\mathbf{x} \in \mathbb{R}^2 \mid |\mathbf{x}| > 1\} = \mathbb{R}^2 \setminus D^2$ where $D^2 = \{\mathbf{x} \in \mathbb{R}^2 \mid |\mathbf{x}| \leq 1\}$.
- (b) $S^1 = \{ \mathbf{x} \in \mathbb{R}^2 \mid |\mathbf{x}| = 1 \}$, the unit circle, and $T = \{ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| = 1 \}$, the diagonal square, are homeomorphic.

1.4 Problem. We prove that two subsets are homeomorphic by writing down a homeomorphism. How can we prove that two subsets are *not* homeomorphic?

1.5 Definition. A property P of subsets of Euclidean spaces is a *topological* property when, if X and Y are homeomorphic subsets, then X has property P if and only if Y has property P.

Thus, if X has property P and Y does not have property P then X and Y are not homeomorphic.

Path-connected subsets of Euclidean space

- **1.6 Definition.** (a) Let X be a subset of some Euclidean space. A path in X is a continuous function $\sigma: [0,1] \to X$ where $[0,1] = \{t \in \mathbb{R} \mid 0 \leq t \leq 1\}$. The point $\sigma(0)$ is the beginning point of the path and the point $\sigma(1)$ is the terminal point of the path. We say that σ is a path in X from $\sigma(0)$ to $\sigma(1)$.
 - (b) The subset X is said to be *path-connected* if, for each pair of points \mathbf{x} , $\mathbf{x}' \in X$, there is a path in X from \mathbf{x} to \mathbf{x}' .

1.7 Proposition. The closed unit ball (or disc) $D^n = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x}| \leq 1 \}$ in \mathbb{R}^n is path-connected.

Proof. Given $\mathbf{x}, \mathbf{x}' \in D^n$ define $\sigma \colon [0, 1] \to \mathbb{R}^n$ by

$$\sigma(s) = \mathbf{x} + s(\mathbf{x}' - \mathbf{x}) = (1 - s)\mathbf{x} + s\mathbf{x}'$$

for $s \in [0, 1]$. Then σ is continuous, $\sigma(0) = \mathbf{x}$ and $\sigma(1) = \mathbf{x}'$ so σ is a path in \mathbb{R}^n from \mathbf{x} to \mathbf{x}' .

However, for $0 \leq s \leq 1$, $|\sigma(s)| = |(1-s)\mathbf{x} + sx'| \leq |(1-s)\mathbf{x}| + |s\mathbf{x}'|$ (by the triangle inequality) = $(1-s)|\mathbf{x}| + s|\mathbf{x}'|$ (since $s \geq 0$ and $1-s \geq 0$) $\leq (1-s) + s$ (since $x, \mathbf{x}' \in D^n$) = 1, i.e. $|\sigma(s)| \leq 1$. Hence $\sigma(s) \in D^n$ and so $\sigma: [0,1] \to D^n$ is a path in D^n from \mathbf{x} to \mathbf{x}' . Hence D^n is path-connected.

1.8 Exercise. The unit circle S^1 in \mathbb{R}^2 is path-connected.

1.9 Theorem. Let $f: X \to Y$ be a continuous surjection where X and Y are subsets of Euclidean spaces. Then, if X is path-connected, so is Y.

Proof. Exercise.

1.10 Corollary. Path-connectedness is a topological property.

Proof. Suppose that X and Y are homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism $f: X \to Y$. Then if X is path-connected so is Y by the Theorem since f is a continuous surjection. Conversely, if Y is path-connected then so is X since $f^{-1}: Y \to X$ is a continuous surjection. Thus, X is path-connected if and only if Y is path-connected as required. \Box

1.11 Proposition. The subset $\mathbb{R} \setminus \{0\}$ is not path-connected and so $\mathbb{R} \setminus \{0\} \not\cong S^1$.

Proof. This is true because there is no path in $\mathbb{R} \setminus \{0\}$ from -1 to 1. This may be proved by contradiction. Suppose, for contradiction, that $\sigma: [0,1] \to \mathbb{R} \setminus \{0\}$ is a path from -1 to 1 so that $\sigma(0) = -1$ and $\sigma(1) = 1$. Then $i \circ \sigma: [0,1] \to \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is a continuous function with values -1 and 1 for which 0 is not a value. This contradicts the intermediate value property of the function σ (Theorem 0.23(b) in the Background Material) since -1 < 0 < 1 and so gives the necessary contradiction. Hence σ cannot exist, as required and so $\mathbb{R} \setminus \{0\}$ is not path-connected. It follows that $\mathbb{R} \setminus \{0\} \not\cong S^1$ since S^1 is path-connected and path-connectedness is a topological property.

1.12 Problem. Are S^1 and [0, 1) homeomorphic? There is a continuous bijection $f: [0, 1) \to S^1$ defined by $f(x) = (\cos 2\pi x, \sin 2\pi x)$. More generally, is S^1 homeomorphic to any subset of \mathbb{R} ?

Path-components

1.13 Definition. Suppose that X is a subset of a Euclidean space.

(a) Given $\mathbf{x} \in X$, we may define a path $\varepsilon_{\mathbf{x}} \colon [0,1] \to X$ by

$$\varepsilon_{\mathbf{x}}(s) = \mathbf{x} \quad \text{for } 0 \leq s \leq 1.$$

This is called the *constant path* at \mathbf{x} .

(b) Given a path $\sigma: [0,1] \to X$ in X we may define a path

$$\overline{\sigma}(s) = \sigma(1-s) \text{ for } 0 \leq s \leq 1.$$

This is called the *reverse path* of σ and is a path from $\sigma(1)$ to $\sigma(0)$.

(c) Given paths $\sigma_1: [0,1] \to X$ and $\sigma_2: [0,1] \to X$ in X such that $\sigma_1(1) = \sigma_2(0)$ we may define a path $\sigma_1 * \sigma_2: [0,1] \to X$ by

$$\sigma_1 * \sigma_2(s) = \begin{cases} \sigma_1(2s) & \text{for } 0 \leqslant s \leqslant 1/2, \\ \sigma_2(2s-1) & \text{for } 1/2 \leqslant s \leqslant 1. \end{cases}$$

This is called the *product* of the paths σ_1 and σ_2 and is a path from $\sigma_1(0)$ to $\sigma_2(1)$.

[Note that $\sigma_1 * \sigma_2$ is well-defined and continuous at t = 1/2 by the conditions on σ_1 and σ_2 .]

1.14 Proposition. Given X, a subset of a Euclidean space, we may define an equivalence relation on X as follows: for $\mathbf{x}, \mathbf{x}' \in X, \mathbf{x} \sim \mathbf{x}'$ if and only if there is a path in X from \mathbf{x} to \mathbf{x}' .

Proof. We check the conditions for an equivalence relation (Definition 0.15). The reflexive property. For each point $\mathbf{x} \in X$, $\mathbf{x} \sim \mathbf{x}$ using the constant path $\varepsilon_{\mathbf{x}}$.

The symmetric property. Suppose that \mathbf{x} and $x' \in X$ such that $\mathbf{x} \sim \mathbf{x}'$. Then there is a path σ in X from \mathbf{x} to \mathbf{x}' . The reverse path $\overline{\sigma}$ is then a path in X from \mathbf{x}' to \mathbf{x} and so $\mathbf{x}' \sim \mathbf{x}$ as requirec.

The transitive property. Suppose that \mathbf{x}, \mathbf{x}' and $\mathbf{x}'' \in X$ such that $\mathbf{x} \sim \mathbf{x}'$ and $\mathbf{x}' \sim \mathbf{x}''$. This means that there is a paths σ_1 in X from \mathbf{x} to \mathbf{x}' and a path σ_2 in X from \mathbf{x}' to \mathbf{x}'' . Then the product path $\sigma_1 * \sigma_2$ is a path in X from \mathbf{x} to \mathbf{x}'' and so $\mathbf{x} \sim \mathbf{x}''$ as required.

1.15 Definition. Given X, a subset of a Euclidean space, the equivalence classes of the equivalence relation in Proposition 1.14 are called the *path-components* of X. We write $\pi_0(X)$ for the set of path-components of X and $[\mathbf{x}]$ for the path-component of a point $\mathbf{x} \in X$.

1.16 Example. $\pi_0(\mathbb{R} \setminus \{0\}) = \{(-\infty, 0), (0, \infty)\}.$

1.17 Proposition. Homeomorphic sets have the same number of path-components.

Proof. Suppose that X and Y are homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism $f: X \to Y$. It it will be shown that this continuous function induces a bijection $f_*: \pi_0(X) \to \pi_0(Y)$ by $f_*([\mathbf{x}]) = [f(\mathbf{x})]$. This implies that $\pi_0(X)$ and $\pi_0(Y)$ have the same cardinality which is what we have prove.

The function f_* is well-defined because, if $[\mathbf{x}] = [\mathbf{x}']$ then $\mathbf{x} \sim \mathbf{x}'$ and so there is a path $\sigma : [0,1] \to X$ in X from \mathbf{x} to \mathbf{x}' . It follows that $f \circ \sigma : [0,1] \to X \to Y$ is a path in Y from $f(\mathbf{x})$ to $f(\mathbf{x}')$ and so $f(\mathbf{x}) \sim f(\mathbf{x}')$, i.e. $[f(\mathbf{x})] = [f(\mathbf{x}')]$. The function f_* is a bijection since it is easily checked that $(f^{-1})_* : \pi_0(Y) \to \pi_0(X)$, the function induced by the inverse $f^{-1} : Y \to X$, is an inverse for f_* (Exercise). \Box

Cut-points in subsets of Euclidean space

1.18 Definition. Suppose that X is a subset of some Euclidean space. Then a point $p \in X$ is called a *cut-point of type* n of X or an *n-point* of X if its complement $X \setminus \{p\}$ has n path-components.

- **1.19 Example.** (a) In [0,1) each $x \in (0,1)$ is a 2-point and 0 is a 1-point.
- (b) In the subset of \mathbb{R}^2 given by the coordinate axes, $\{ (x_1, x_2) \in \mathbb{R}^2 | x_1 = 0 \text{ or } x_2 = 0 \}$, (0,0) is a 4-point whereas all other points are 2-points.
- (c) In S^1 every point is a 1-point.

1.20 Theorem. Homeomorphic sets have the same number of cut-points of each type.

Proof. Let X and Y be homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism $f: X \to Y$. Suppose that $\mathbf{p} \in X$ is an *n*-point of X. Then f induces a homeomorphism $X \setminus \{\mathbf{p}\} \to Y \setminus \{f(\mathbf{p})\}$ and so these subsets have the same number of path-components by Proposition 1.17. Hence $f(\mathbf{p})$ is an *n*-point of Y.

This shows that f induces a bijection between the *n*-points of X and the *n*-points of Y and so they must have the same number of *n*-points. \Box

1.21 Example. [0,1) and S^1 are not homeomorphic since [0,1) has some 2-points (all of its points apart from 0) whereas S^1 has none.

Other applications of path-connectness

1.22 Theorem (The Brouwer Fixed Point Theorem in dimension 1). Suppose that $f: [-1,1] \rightarrow [-1,1]$ is a continuous map. Then f has a fixed point, i.e. there exists a point $t \in [-1,1]$ such that f(t) = t.

Proof. Suppose for contradiction that f does not have a fixed point. Then $f(t) \neq t$ for all $t \in [-1, 1]$. Thus we may define a function $g: [-1, 1] \rightarrow \{-1, 1\}$ by g(t) = (f(t) - t)/|f(t) - t|. This is a continuous function from basic real analysis. However, since f(-1) > -1 and f(1) < 1 it follows that g(-1) = 1 and g(1) = -1. Hence g is a surjection. Hence, by Proposition 1.9, $\{-1, 1\}$ path-connected which contradicts the Intermediate Value Theorem (as in the proof of Proposition 1.11). Hence f has a fixed point. \Box

1.23 Theorem (The Borsuk-Ulam Theorem in dimension 1). Suppose that $f: S^1 \to \mathbb{R}$ is a continuous function. Then there is a point $\mathbf{x} \in S^1$ such that $f(\mathbf{x}) = f(-\mathbf{x})$.

Proof. Exercise. Try a similar proof to that of Theorem 1.22. \Box

1.24 Definition. A subset $A \subset \mathbb{R}^n$ is *bounded* if there is a real number R such that $\mathbf{x} \in A \implies |\mathbf{x}| \leq R$.

1.24 Theorem (The Pancake Theorem). Let A and B be bounded subsets of \mathbb{R}^2 . Then there is a (straight) line in \mathbb{R}^2 which divides each of A and B in half by area.

Remark. The statement of this result assumes that A and B each have a well-defined area. In this course we ignore the technical difficulties associated with defining the area of a subset of \mathbb{R}^2 (the subject of integration and measure theory).

Outline Proof. Since A and B are bounded there is a real number R such that $\mathbf{a} \in A \Rightarrow |\mathbf{a}| \leq R$ and $\mathbf{x} \in B \Rightarrow |\mathbf{x}| \leq R$.

Suppose that $\mathbf{x} \in S^1$. For $t \in [-R, R]$ let $L_{\mathbf{x},t}$ denote the straight line through $t\mathbf{x}$ perpendicular to \mathbf{x} . Let $v(t) \in [0, 1]$ be the proportion of the area of A on the same side of $L_{\mathbf{x},t}$ as $R\mathbf{x}$. Then $v \colon [-R, R] \to [0, 1]$ is a continuous decreasing function with v(-R) = 1 and v(R) = 0. By the Intermediate Value Theorem there exists $t \in [-R, R]$ such that v(t) = 1/2. This t may not be unique but it is not difficult to show that $v^{-1}(1/2) = \{t \mid v(t) = 1/2\} = [\alpha, \beta]$, a closed interval. Let $f_A(\mathbf{x}) = (\alpha + \beta)/2$. Then the line $L_{\mathbf{x}, f_A(\mathbf{x})}$ bisects A.

The function $f_A: S^1 \to \mathbb{R}$ can be shown to be continuous. Furthermore $f_A(-\mathbf{x}) = -f_A(\mathbf{x})$ (since $L_{\mathbf{x}, f_A(\mathbf{x})}$ and $L_{\mathbf{x}, f_A(-\mathbf{x})}$ are the same line so that $f_A(\mathbf{x})\mathbf{x} = f_A(-\mathbf{x})(-\mathbf{x})$).

Similarly, using the region B, we may define a continuous function $f_B \colon S^1 \to \mathbb{R}$ such that $f_B(-\mathbf{x}) = -f_B(\mathbf{x})$ and $L_{\mathbf{x}, f_B(\mathbf{x})}$ bisects B.

Let the continuous function $f: S^1 \to \mathbb{R}$ be given by $f(\mathbf{x}) = f_A(\mathbf{x}) - f_B(\mathbf{x})$. By the Borsuk-Ulam Theorem, there exists $\mathbf{x}_0 \in S^1$ such that $f(\mathbf{x}_0) = f(-\mathbf{x}_0)$. But $f(-\mathbf{x}_0) = f_A(-\mathbf{x}_0) - f_B(-\mathbf{x}_0) = -f_A(\mathbf{x}_0) + f_B(\mathbf{x}_0) = -f(\mathbf{x}_0)$. Hence $f(\mathbf{x}_0) = -f(\mathbf{x}_0)$ so that $f(\mathbf{x}_0) = 0$. This means that $f_A(\mathbf{x}_0) - f_B(\mathbf{x}_0) = 0$ so that $f_A(\mathbf{x}_0) = f_B(\mathbf{x}_0)$.

From the definition of f_A and f_B it follows that the line $L_{\mathbf{x}_0, f_A(\mathbf{x}_0)} = L_{\mathbf{x}_0, f_B(\mathbf{x}_0)}$ bisects both of A and B and so is the line whose existence is the claim of the theorem. \Box