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MATH31052 Topology

1 Topological Equivalence and Path-Connectedness

1.1 Definition. Suppose that X and Y are subsets of Euclidean spaces. A
function f: X — Y is a topological equivalence or a homeomorphism if it is
a continuous bijection such that the inverse f~1: Y — X is also continuous.
If such a homeomorphism exists then X and Y are topologically equivalent
or homeomorphic, written X =Y.

1.2 Example. (a) The real line R and the open half line (0,00) = {z €
R | z > 0 } are homeomorphic. A homeomorphism is given by exp: R —
(0, 00) with inverse log,: (0,00) — R.

(b) X =R?\ {0}, the punctured plane, and Y = {x = (x1, 29, 23) € R3 |
2?2 + 22 = 1}, the infinite cylinder, are homeomorphic. A homeomor-
phism f: X — Y is given by

flar,w) = (w1/[x], 22/ %], log.(|x]))

with inverse g: Y — X given by

9(y1,92,y3) = €% (y1,92).

1.3 Exercise.  (a) The punctured plane, X = R2\ {0}, is homeomorphic
to the complement of the unit disc, Z = {x € R? | [x| > 1} = R?\ D?
where D? = {x € R? | |x| < 1}.

(b) St = {x € R? | |x| = 1}, the unit circle, and T = {x = (71,29) €
R? | |21| 4 |z2| = 1}, the diagonal square, are homeomorphic.

1.4 Problem. We prove that two subsets are homeomorphic by writ-
ing down a homeomorphism. How can we prove that two subsets are not
homeomorphic?

1.5 Definition. A property P of subsets of Euclidean spaces is a topological
property when, if X and Y are homeomorphic subsets, then X has property
P if and only if Y has property P.

Thus, if X has property P and Y does not have property P then X and Y
are not homeomorphic.



Path-connected subsets of Euclidean space

1.6 Definition. (a) Let X be a subset of some Euclidean space. A path
in X is a continuous function o: [0,1] — X where [0,1] = {t € R |
0 <t < 1}. The point 0(0) is the beginning point of the path and the
point o(1) is the terminal point of the path. We say that o is a path
in X from o(0) to o(1).

(b) The subset X is said to be path-connected if, for each pair of points x,
x’ € X, there is a path in X from x to x'.

1.7 Proposition. The closed unit ball (or disc) D" = {x e R" | [x| <1}
in R™ is path-connected.

Proof. Given x,x" € D" define o: [0,1] — R" by
o(s) =x+s(x' —x) = (1 — 8)x + sx’

for s € [0,1]. Then o is continuous, 0(0) = x and o(1) = x’ so o is a path
in R” from x to x'.

However, for 0 < s < 1, |o(s)| = |(1 — s)x + sz’| < |[(1 — s)x| + |sx/| (by
the triangle inequality) = (1 — s)|x| + s|x/| (since s > 0 and 1 — s > 0)
< (1—5)+ s (since z, x' € D™) =1, i.e. |o(s)| < 1. Hence o(s) € D™ and
so 0: [0,1] — D™ is a path in D™ from x to x’.

Hence D" is path-connected. ]

1.8 Exercise. The unit circle S' in R? is path-connected.

1.9 Theorem. Let f: X — Y be a continuous surjection where X and Y
are subsets of Euclidean spaces. Then, if X is path-connected, so is Y.

Proof. Exercise. O
1.10 Corollary. Path-connectedness is a topological property.

Proof. Suppose that X and Y are homeomorphic subsets of Euclidean spaces.
Then there is a homeomorphism f: X — Y. Then if X is path-connected
so is Y by the Theorem since f is a continuous surjection. Conversely, if
Y is path-connected then so is X since f~': Y — X is a continuous sur-
jection. Thus, X is path-connected if and only if Y is path-connected as
required. ]

1.11 Proposition. The subset R\ {0} is not path-connected and so R\
{0} 2 5.



Proof. This is true because there is no path in R\ {0} from —1 to 1. This
may be proved by contradiction. Suppose. for contradiction, that o: [0,1] —
R\ {0} is a path from —1 to 1 so that ¢(0) = —1 and o(1) = 1. Then
ioo:[0,1] - R\ {0} — R is a continuous function with values —1 and 1 for
which 0 is not a value. This contradicts the intermediate value property of
the function ¢ (Theorem 0.23(b) in the Background Material) since —1 <
0 < 1 and so gives the necessary contradiction. Hence o cannot exist, as
required and so R\ {0} is not path-connected. It follows that R\ {0} % S*
since S is path-connected and path-connectedness is a topological property.

O]

1.12 Problem. Are S' and [0,1) homeomorphic? There is a continuous
bijection f: [0,1) — S* defined by f(z) = (cos 27z, sin 27x).
More generally, is S' homeomorphic to any subset of R?



Path-components

1.13 Definition. Suppose that X is a subset of a Euclidean space.
(a) Given x € X, we may define a path ex: [0,1] — X by
ex(s)=x for0<s<1.
This is called the constant path at x.

(b) Given a path o: [0,1] = X in X we may define a path
g(s)=0c(1l—s) for0<s< 1
This is called the reverse path of ¢ and is a path from o (1) to ¢(0).

(c) Given paths o1: [0,1] — X and o9: [0,1] — X in X such that o1(1) =
02(0) we may define a path o1 *x o9: [0,1] = X by

¥ oa(s) = 01(2s) for 0 <s<1/2,
oLxoAs) = o92(2s —1) for1/2<s< 1.

This is called the product of the paths o1 and o9 and is a path from
01(0) to o2(1).

[Note that oy x o9 is well-defined and continuous at ¢ = 1/2 by the conditions
on o1 and o03.]

1.14 Proposition. Given X, a subset of a Euclidean space, we may define
an equivalence relation on X as follows: for x, x’ € X, x ~ x’ if and only if
there is a path in X from x to x'.

Proof. We check the conditions for an equivalence relation (Definition 0.15).
The reflexive property. For each point x € X, x ~ x using the constant
path ex.

The symmetric property. Suppose that x and z/ € X such that x ~ x/.
Then there is a path ¢ in X from x to x’. The reverse path & is then a path
in X from x’ to x and so X' ~ x as requirec.

The transitive property. Suppose that x, x’ and x” € X such that x ~ x’
and x’ ~ x”. This means that there is a paths o1 in X from x to x’ and a
path o9 in X from x’ to x”. Then the product path o1 x 09 is a path in X
from x to x” and so x ~ x” as required. O



1.15 Definition. Given X, a subset of a Euclidean space, the equivalence
classes of the equivalence relation in Proposition 1.14 are called the path-
components of X. We write mo(X) for the set of path-components of X and
[x] for the path-component of a point x € X.

1.16 Example. m(R\ {0}) = {(—00,0), (0,00)}.

1.17 Proposition. Homeomorphic sets have the same number of path-
components.

Proof. Suppose that X and Y are homeomorphic subsets of Euclidean spaces.
Then there is a homeomorphism f: X — Y. It it will be shown that this con-
tinuous function induces a bijection f.: mo(X) — 7o(Y) by f«([x]) = [f(%)].
This implies that mo(X) and mp(Y") have the same cardinality which is what
we have prove.

The function f is well-defined because, if [x] = [x/] then x ~ x” and so there
isapatho: [0,1] = X in X from x to x'. It follows that foo: [0,1] = X —
Y isapathin Y from f(x) to f(x') and so f(x) ~ f(x), i.e. [f(x)] = [f(X)].
The function f, is a bijection since it is easily checked that (f~1).: m(Y) —
7o(X), the function induced by the inverse f~!: Y — X, is an inverse for
f+ (Exercise). O O

Cut-points in subsets of Euclidean space

1.18 Definition. Suppose that X is a subset of some Euclidean space.
Then a point p € X is called a cut-point of type n of X or an n-point of X
if its complement X \ {p} has n path-components.

1.19 Example. (a) In [0,1) each = € (0,1) is a 2-point and 0 is a 1-
point.

(b) In the subset of R? given by the coordinate axes, { (z1,z2) € R? | 1 =
0or zo =0}, (0,0) is a 4-point whereas all other points are 2-points.

(c) In S! every point is a 1-point.

1.20 Theorem. Homeomorphic sets have the same number of cut-points
of each type.

Proof. Let X and Y be homeomorphic subsets of Euclidean spaces. Then
there is a homeomophism f: X — Y. Suppose that p € X is an n-point of
X. Then f induces a homeomorphism X \ {p} — Y \ {f(p)} and so these



subsets have the same number of path-components by Proposition 1.17.
Hence f(p) is an n-point of Y.

This shows that f induces a bijection between the n-points of X and the
n-points of Y and so they must have the same number of n-points. O

1.21 Example. [0,1) and S* are not homeomorphic since [0, 1) has some
2-points (all of its points apart from 0) whereas S! has none.

Other applications of path-connectness

1.22 Theorem (The Brouwer Fixed Point Theorem in dimension
1). Suppose that f: [—1,1] — [—1,1] is a continuous map. Then f has a
fixed point, i.e. there exists a point t € [—1,1] such that f(t) = t.

Proof. Suppose for contradiction that f does not have a fixed point. Then
f(t) # t for all t € [-1,1]. Thus we may define a function g¢: [-1,1] —
{=1,1} by g(t) = (f(t) —t)/|f(t) — t|. This is a continuous function from
basic real analysis. However, since f(—1) > —1 and f(1) < 1 it follows that
g(—1) = 1 and ¢g(1) = —1. Hence g is a surjection. Hence, by Proposi-
tion 1.9, {—1,1} path-connected which contradicts the Intermediate Value
Theorem (as in the proof of Proposition 1.11). Hence f has a fixed point. [J

1.23 Theorem (The Borsuk-Ulam Theorem in dimension 1). Sup-
pose that f: S — R is a continuous function. Then there is a point x € S*
such that f(x) = f(—x).

Proof. Exercise. Try a similar proof to that of Theorem 1.22. O

1.24 Definition. A subset A C R" is bounded if there is a real number R
such that x € A = |x| < R.

1.24 Theorem (The Pancake Theorem). Let A and B be bounded
subsets of R%. Then there is a (straight) line in R? which divides each of A
and B in half by area.

Remark. The statement of this result assumes that A and B each have a
well-defined area. In this course we ignore the technical difficulties associated
with defining the area of a subset of R? (the subject of integration and
measure theory).

Outline Proof. Since A and B are bounded there is a real number R such
thata€ A= |a]< Rand x € B = |x| < R.



Suppose that x € S*. For t € [-R, R] let Lx: denote the straight line
through tx perpendicular to x. Let v(t) € [0,1] be the proportion of the
area of A on the same side of Ly; as Rx. Then v: [-R,R] — [0,1] is a
continuous decreasing function with v(—R) = 1 and v(R) = 0. By the
Intermediate Value Theorem there exists ¢ € [—R, R] such that v(t) = 1/2.
This ¢ may not be unique but it is not difficult to show that v=1(1/2) = {¢t |
v(t) =1/2} = [, (], a closed interval. Let fa(x) = (a+ 3)/2. Then the
line Ly r,(x) bisects A.

The function f4: S' — R can be shown to be continuous. Furthermore
fa(=x) = —fa(x) (since Ly f,(x) and Ly j,(—x) are the same line so that
Fa(x)x = fa(—x)(—x)).

Similarly, using the region B, we may define a continuous function fz: S' —
R such that fp(—x). = —fp(x) and Ly s, (x) bisects B.

Let the continuous function f: S' — R be given by f(x) = fa(x) — f5(x).
By the Borsuk-Ulam Theorem, there exists xo € S!' such that f(xq) =
f(=x%0). But f(=x0) = fa(—%0) — fB(=%0) = —fa(x0) + fB(x0) = — f(%0).
Hence f(x0) = —f(x0) so that f(xo) = 0. This means that fa(xg) —
fB(%0) = 0 so that fa(xo) = fB(x0).

From the definition of f4 and fp it follows that the line Ly ¢, (xy) =
Ly, t5(xo) bisects both of A and B and so is the line whose existence is
the claim of the theorem. O
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