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MATH31052 Topology

2 Topological Spaces

2.1 Problem. What properties of a subset of Euclidean space are pre-
served by a homeomorphism or topological equivalence, in other words de-
termine ‘the topology’?

2.2 Definition. Suppose X is a subset of a Euclidean space, x0 ∈ X and
ε > 0. Then the open ε-ball about x0 (in X) is the set

BX
ε (x0) = {x ∈ X | |x− x0| < ε }.

For X = Rn, this is often written Bε(x0) so that, for X ⊂ Rn, BX
ε (x0) =

Bε(x0) ∩X.

2.3 Remark. BX
ε (x0) in general depends on X, e.g. BR

1 (0) = (−1, 1),

B
[0,∞)
1 (0) = [0, 1), BZ

1 (0) = {0}.

2.4 Proposition. A function f : X → Y of subsets of Euclidean spaces is
continuous at x0 ∈ X if and only if, for each real number ε > 0, there exists
real number δ > 0 such that

x ∈ BX
δ (x0)⇒ f(x) ∈ BY

ε

(
f(x0)

)
(1)

or (equivalently)

BX
δ (x0) ⊂ f−1

(
BY
ε

(
f(x0)

))
. (2)

Proof. (1) is a restatement of Definition 0.21 and then (2) is a rewrite of (1)
using Definition 0.13(b).

2.5 Definition. Suppose that X is a subset of a Euclidean space. A subset
U of X is a neighbourhood of a point x0 ∈ X if there exists a real number
ε > 0 such that BX

ε (x0) ⊂ U .
A subset U ⊂ X is open (in X) if it is a neighbourhood of each point x0 ∈ U .

2.6 Example. (a) For any subset X of a Euclidean space, X is open in
X using any ε > 0 since by definition BX

ε (x0) ⊂ X.

(b) For any subset X of a Euclidean space, the empty set ∅ is open in X
since the condition is vacuous.
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(c) An open interval (a, b) is open in R [which means that the language is
consistent] since for x0 ∈ (a, b) we can put ε = min(x0 − a, b− x0).

(d) The singleton set {0} is not open in R (since Bε(0) contains ε/2 6∈ {0}
for all ε > 0) but it is open in Z (since, taking ε = 1, BZ

1 (0) = {0} ⊂
{0}).

2.7 Proposition. For x0 ∈ X ⊂ Rn and ε > 0, the open ε-ball BX
ε (x0) is

open in X.

Proof. Given x1 ∈ BX
ε (x0), then |x0 − x1| < ε. Put ε1 = ε− |x0 − x1| > 0.

Then BX
ε1(x1) ⊂ BX

ε (x0) as required to prove that Bε(x) is open [for x ∈
BX
ε1(x1) ⇒ |x − x1| < ε1 = ε − |x0 − x1| ⇒ |x − x1| + |x1 − x0| < ε ⇒
|x−x0| < ε (since |x−x0| 6 |x−x1|+ |x1−x0| by the Triangle Inequality)
⇒ x ∈ BX

ε (x0).]

2.8 Theorem. A function f : X → Y of subsets of Euclidean spaces is
continuous if and only if, for each open subset V of Y , the subset f−1(V ) is
open in X.

Proof. ‘⇒’: Suppose that f : X → Y is continuous. Let V be an open subset
of Y . Then, to see that f−1(V ) is open in X, let x0 inf−1(V ). Then f(x0) ∈
V and so, since V is open in Y , there exists ε > 0 such that BY

ε

(
f(x0)

)
⊂

V . So f−1
(
BY
ε (f(x0))

)
⊂ f−1(V ). Now, since f is continuous at x0, by

Proposition 2.4 there exists δ > 0 such that BX
δ (x0) ⊂ f−1

(
BY
ε (f(x0))

)
.

Thus BX
δ (x0) ⊂ f−1(V ) as required to prove that f−1(V ) is a neighbourhood

of x0. Hence f−1(V ) is open in X.
‘⇐’: Suppose that the condition in the Theorem holds and x0 ∈ X. To see
that f is continuous at x0 suppose that ε > 0. Then, by Proposition 2.7,
BY
ε

(
f(x0)

)
is open in Y . Hence, by hypothesis, f−1

(
BY
ε (f(x0))

)
is open in

X. So, since x0 ∈ f−1
(
BY
ε (f(x0))

)
, there exists δ > 0 such that BX

δ (x0) ⊂
f−1

(
BY
ε (f(x0))

)
and so, by Proposition 2.4, f is continuous at x0. Hence

f : X → Y is continuous.

2.9 Corollary. A bijection f : X → Y of subsets of Euclidean spaces is a
homeomorphism if and only if

U open in X ⇔ f(U) open in Y.

Proof. Suppose that f : X → Y is a bijection of subsets of Euclidean space.
(a) For each V ⊂ Y , V = f(U) where U = f−1(V ) (since f is a bijection).
Hence f is continuous if and only if (V open in Y ⇒ f−1(V ) open in X)
(Theorem 2.8) if and only if (f(U) open in Y ⇒ U open in X).
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(b) Let g = f−1 : Y → X. Then g−1 = f . Hence, for U ⊂ X, g−1(U) =
f(U). So g = f−1 is continuous if and only if (U open in X ⇒ g−1(U) open
in Y ) if and only if (U open in X ⇒ f(U) open in Y ).

2.10 Remark. This result indicates that the answer to Problem 2.1 is that
a homeomorphism is a bijection which preserves the open sets and so ‘the
topology’ is determined by the open sets. So we can specify a ‘topology’ on
any set X by declaring which subsets of X are to be the open sets.

2.11 Definition. Given a set X, a topology on X is a collection τ of subsets
of X with the following properties:

(i) ∅ ∈ τ , X ∈ τ ;

(ii) the intersection of any two subsets in τ is in τ :

U1, U2 ∈ τ ⇒ U1 ∩ U2 ∈ τ ;

(iii) the union of any collection of subsets in τ is in τ :

Uλ ∈ τ for all λ ∈ Λ⇒
⋃
λ∈Λ

Uλ ∈ τ.

A pair (X, τ) such that τ is a topology on X is called a topological space,
usually denoted X when the topology is clear. The subsets in τ are called
the open subsets of X (with the topology τ) or the open sets of the topology
τ . Thus, given a topology τ on a set X the statements ‘U ∈ τ ’ and ‘U is a
open subset in X’ have precisely the same meaning.

2.12 Definition. Suppose that (X, τ1) and (Y, τ2) are topological spaces.
A function f : X → Y is continuous (with respect to τ1 and τ2) if, for each
open subset V of Y (with the topology τ2), the subset f−1(V ) is open in X
(with the topology τ1), i.e.

V ∈ τ2 ⇒ f−1(V ) ∈ τ1.

The function f : X → Y is a homeomorphism if it is a continuous bijection
with continuous inverse.

2.13 Proposition. If f : X → Y and g : Y → Z are continuous functions
of topological spaces, then g ◦ f : X → Z is a continuous function.

Proof. Exercise.
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2.14 Proposition. A bijection f : X → Y between topological spaces is a
homeomorphism if and only if

U is open in X ⇔ f(U) is open in Y .

Proof. Exercise. (This is identical to the proof of Corollary 2.9 with Defini-
tion 2.12 playing the role of Theorem 2.8.)

2.15 Remark. The original definition of topological space given by Felix
Hausdorff in 1914 was equivalent to Definition 2.11 with the addition of a
fourth condition on the set of open sets (now called the Hausdorff condition
to be discussed in §4).

2.16 Proposition. (a) Suppose that X is a subset of Euclidean space.
Then the open subsets of X defined by Definition 2.5 are the open
subsets of a topology on X (called the usual topology on X).

(b) A function f : X → Y of subsets of Euclidean spaces is continuous
according to Definition 0.21 if and only if it is continuous according to
Definition 2.12 with respect to the usual topologies on X and Y .

Proof. (a) To see that the open sets of a subset of Euclidean space X given
by Defintion 2.5 define a topology on X we need to check the conditions in
Definition 2.11.
(i) ∅ and X are open in X by Examples 2.6(a) and (b).
(ii) Suppose that U1 ⊂ X and U2 ⊂ X are open in X. Then U1 ∩U2 is open
in X (Exercise).
(iii) Suppose that Uλ ⊂ X is open in X for all λ ∈ Λ. Then

⋃
λ∈Λ Uλ is open

in X (Exercise).
Hence these open sets are the open sets of a topology on X.
(b) This is a restatement of Theorem 2.8.

2.17 Example. (a) The discrete topology on a set X consists of all the
subsets of X.

If X has the discrete topology and Y is any topological space, then all
functions f : X → Y are continuous.

(b) The indiscrete topology on a set X is given by τ = {∅, X}.
If X has the indiscrete topology and Y is any topological space, then
all functions f : Y → X are continuous.

(c) Suppose that X = {a, b}, a two point set. Then there are four topolo-
gies on X:
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(i) τ1 = {∅, X} (the indiscrete topology);

(ii) τ2 = {∅, {a}, X};
(iii) τ3 = {∅, {b}, X};
(iv) τ2 = {∅, {a}, {b}, X} (the discrete topology).

The topological spaces (X, τ2) and (X, τ3) are homeomorphic with a
homeomorphism given by a 7→ b, b 7→ a. Either of these topologies on
a set of two elements is called the Sierpinski topology.

(d) Suppose that X = {a, b, c} is a three point set.

(i) {∅, {a, b}, {b, c}, X} is not a topology (intersection fails).

(ii) {∅, {a}, {b}, X} is not a topology (union fails).

(e) The identity function idX : X → X, given by idX(x) = x for all x ∈ X,
is continuous with respect to any topology on the set X (Exercise).

(f) Given sets X and Y and a point a ∈ Y , the constant function ca : X →
Y , given by ca(x) = a for all x ∈ X, is continous with respect to any
topologies on X and Y (Exercise).

2.18 Remark. (a) By induction, the intersection of any finite number
of open subsets in a topology is open. However, we do not require the
intersection every collection of open subsets to be open. For example,
in R with the usual topology,

⋂∞
n=1(−1/n, 1/n) = {0} which is not

open.

(b) Continuity does not imply that the image of each open set if open. For
example, in R with the usual topology the continuous map f : R→ R
given by f(x) = x2 has f(−1, 1) = [0, 1) which is not open.

A continuous function f : X → Y of topological spaces for which U
open in X implies that f(U) is open in Y is called an open map.

2.19 Definition. A subset A of a topological space X is closed when its
complement X \A is open.

2.20 Proposition. In a topological space X,

(i) ∅ and X are closed;

(ii) the union of any pair of closed subsets is closed;

(iii) the intersection of any collection of closed subsets is closed.
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Furthermore, any collection of subsets of X satisfying these conditions is the
set of closed subsets of a topology on X.

Proof. This is immediate from Definition 2.11 using the set theoretic prop-
erties of complements of unions and intersections (the de Morgan Laws,
Proposition 0.5(iv)).

2.21 Remark. The word ‘closed’ is not the same as ‘not open’. For
example, in R with the usual topology, [0, 1) is neither open nor closed
whereas ∅ is both open and closed. In general, most subsets are neither
open nor closed. Some subsets are both open and closed.

2.22 Definition. Suppose that X is a topological space. Then a collection
B of open subsets in X is called a basis for the topology on X if every non-
empty open subset in X can be expressed as a union of open subsets in
B.

2.23 Proposition. A basis for the usual topology on R is given by

B = { (a, b) | a, b ∈ R, a < b }.

Proof. Given an open set U ⊂ R (in the usual topology) then, for each
x ∈ U there exists εx > 0 such that Bεx(x) = (x − εx, x + εx) ⊂ U . Then
U =

⋃
x∈U (x− εx, x+ εx) (the empty union if U = ∅).

2.24 Remark. The material in §1 about paths, path-connectedness and
cut-points extends from subsets of Euclidean spaces to all topological spaces.

2.25 Definition. For a subset A ⊂ X of a topological space X the interior
A◦ is defined to be the union of all open subsets U of X, which are contained
in A.
The closure A is defined as the intersection of all closed subsets of X which
contain A.
The boundary ∂A is defined as the difference A \A◦.

2.26 Definition. An open neighbourhood of a point x in a topological
space X is an open subset which contains x.

2.27 Exercise. A point x is contained in the interior of A ⊂ X if and only
if there exists an open neigbourhood U of x, which is contained in A.
A point x ∈ X is contained in A if and only if every open neighbourhood of
x intersects A.
A point x ∈ X is contained in ∂A if and only if every open neighbourhood
of x intersects A and its complement X \A.
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2.28 Example. The consider the interval J = [0, 1) as a subset of R with
the usual topology. Then we have J◦ = (0, 1) and J = [0, 1] and ∂J = {0, 1}.
Indeed, (0, 1) is an open subset, which is contained in J . Hence, (0, 1) ⊂
J◦, but every open subset which contains 0, will also contain the interval
(−ε, ε) 6⊂ J for ε > 0 sufficiently small. Hence, 0 is not cointained in the
interior.
Similarly [0, 1] is a closed subset, which contains J . Hence, [0, 1) ⊂ J ⊂ [0, 1].
Hence, J has to be either [0, 1) or [0, 1]. Since the closure of a set is a closed
by definition. it follows, that J = [0, 1].
Now, we obtain ∂J = [0, 1] \ (0, 1) = {0, 1}.
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