MATH31052 Topology

2 Topological Spaces

2.1 Problem. What properties of a subset of Euclidean space are preserved by a homeomorphism or topological equivalence, in other words determine 'the topology'?

2.2 Definition. Suppose X is a subset of a Euclidean space, $\mathbf{x}_0 \in X$ and $\varepsilon > 0$. Then the open ε -ball about \mathbf{x}_0 (in X) is the set

$$B_{\varepsilon}^{X}(\mathbf{x}_{0}) = \{ \mathbf{x} \in X \mid |\mathbf{x} - \mathbf{x}_{0}| < \varepsilon \}.$$

For $X = \mathbb{R}^n$, this is often written $B_{\varepsilon}(\mathbf{x}_0)$ so that, for $X \subset \mathbb{R}^n$, $B_{\varepsilon}^X(\mathbf{x}_0) = B_{\varepsilon}(\mathbf{x}_0) \cap X$.

2.3 Remark. $B_{\varepsilon}^{X}(\mathbf{x}_{0})$ in general depends on X, e.g. $B_{1}^{\mathbb{R}}(0) = (-1,1), B_{1}^{[0,\infty)}(0) = [0,1), B_{1}^{\mathbb{Z}}(0) = \{0\}.$

2.4 Proposition. A function $f: X \to Y$ of subsets of Euclidean spaces is continuous at $\mathbf{x}_0 \in X$ if and only if, for each real number $\varepsilon > 0$, there exists real number $\delta > 0$ such that

$$\mathbf{x} \in B^X_{\delta}(\mathbf{x}_0) \Rightarrow f(\mathbf{x}) \in B^Y_{\varepsilon}(f(\mathbf{x}_0))$$
(1)

or (equivalently)

$$B_{\delta}^{X}(\mathbf{x}_{0}) \subset f^{-1}\Big(B_{\varepsilon}^{Y}\big(f(\mathbf{x}_{0})\big)\Big).$$
(2)

Proof. (1) is a restatement of Definition 0.21 and then (2) is a rewrite of (1) using Definition 0.13(b).

2.5 Definition. Suppose that X is a subset of a Euclidean space. A subset U of X is a *neighbourhood* of a point $\mathbf{x}_0 \in X$ if there exists a real number $\varepsilon > 0$ such that $B_{\varepsilon}^X(\mathbf{x}_0) \subset U$.

A subset $U \subset X$ is open (in X) if it is a neighbourhood of each point $\mathbf{x}_0 \in U$.

- **2.6 Example.** (a) For any subset X of a Euclidean space, X is open in X using any $\varepsilon > 0$ since by definition $B_{\varepsilon}^{X}(\mathbf{x}_{0}) \subset X$.
 - (b) For any subset X of a Euclidean space, the empty set \emptyset is open in X since the condition is vacuous.

- (c) An open interval (a, b) is open in \mathbb{R} [which means that the language is consistent] since for $x_0 \in (a, b)$ we can put $\varepsilon = \min(x_0 a, b x_0)$.
- (d) The singleton set $\{0\}$ is not open in \mathbb{R} (since $B_{\varepsilon}(0)$ contains $\varepsilon/2 \notin \{0\}$ for all $\varepsilon > 0$) but it is open in \mathbb{Z} (since, taking $\varepsilon = 1$, $B_1^{\mathbb{Z}}(0) = \{0\} \subset \{0\}$).

2.7 Proposition. For $\mathbf{x}_0 \in X \subset \mathbb{R}^n$ and $\varepsilon > 0$, the open ε -ball $B_{\varepsilon}^X(\mathbf{x}_0)$ is open in X.

Proof. Given $\mathbf{x}_1 \in B_{\varepsilon}^X(\mathbf{x}_0)$, then $|\mathbf{x}_0 - \mathbf{x}_1| < \varepsilon$. Put $\varepsilon_1 = \varepsilon - |\mathbf{x}_0 - \mathbf{x}_1| > 0$. Then $B_{\varepsilon_1}^X(\mathbf{x}_1) \subset B_{\varepsilon}^X(\mathbf{x}_0)$ as required to prove that $B_{\varepsilon}(\mathbf{x})$ is open [for $\mathbf{x} \in B_{\varepsilon_1}^X(\mathbf{x}_1) \Rightarrow |\mathbf{x} - \mathbf{x}_1| < \varepsilon_1 = \varepsilon - |\mathbf{x}_0 - \mathbf{x}_1| \Rightarrow |\mathbf{x} - \mathbf{x}_1| + |\mathbf{x}_1 - \mathbf{x}_0| < \varepsilon \Rightarrow |\mathbf{x} - \mathbf{x}_0| < \varepsilon$ (since $|\mathbf{x} - \mathbf{x}_0| \leqslant |\mathbf{x} - \mathbf{x}_1| + |\mathbf{x}_1 - \mathbf{x}_0|$ by the Triangle Inequality) $\Rightarrow \mathbf{x} \in B_{\varepsilon}^X(\mathbf{x}_0)$.]

2.8 Theorem. A function $f: X \to Y$ of subsets of Euclidean spaces is continuous if and only if, for each open subset V of Y, the subset $f^{-1}(V)$ is open in X.

Proof. ' \Rightarrow ': Suppose that $f: X \to Y$ is continuous. Let V be an open subset of Y. Then, to see that $f^{-1}(V)$ is open in X, let $\mathbf{x}_0 \inf^{-1}(V)$. Then $f(\mathbf{x}_0) \in$ V and so, since V is open in Y, there exists $\varepsilon > 0$ such that $B_{\varepsilon}^Y(f(\mathbf{x}_0)) \subset$ V. So $f^{-1}(B_{\varepsilon}^Y(f(\mathbf{x}_0))) \subset f^{-1}(V)$. Now, since f is continuous at \mathbf{x}_0 , by Proposition 2.4 there exists $\delta > 0$ such that $B_{\delta}^X(\mathbf{x}_0) \subset f^{-1}(B_{\varepsilon}^Y(f(\mathbf{x}_0)))$. Thus $B_{\delta}^X(\mathbf{x}_0) \subset f^{-1}(V)$ as required to prove that $f^{-1}(V)$ is a neighbourhood of \mathbf{x}_0 . Hence $f^{-1}(V)$ is open in X.

'⇐': Suppose that the condition in the Theorem holds and $\mathbf{x}_0 \in X$. To see that f is continuous at \mathbf{x}_0 suppose that $\varepsilon > 0$. Then, by Proposition 2.7, $B_{\varepsilon}^Y(f(\mathbf{x}_0))$ is open in Y. Hence, by hypothesis, $f^{-1}(B_{\varepsilon}^Y(f(\mathbf{x}_0)))$ is open in X. So, since $\mathbf{x}_0 \in f^{-1}(B_{\varepsilon}^Y(f(\mathbf{x}_0)))$, there exists $\delta > 0$ such that $B_{\delta}^X(\mathbf{x}_0) \subset$ $f^{-1}(B_{\varepsilon}^Y(f(\mathbf{x}_0)))$ and so, by Proposition 2.4, f is continuous at \mathbf{x}_0 . Hence $f: X \to Y$ is continuous. \Box

2.9 Corollary. A bijection $f: X \to Y$ of subsets of Euclidean spaces is a homeomorphism if and only if

U open in $X \Leftrightarrow f(U)$ open in Y.

Proof. Suppose that $f: X \to Y$ is a bijection of subsets of Euclidean space. (a) For each $V \subset Y$, V = f(U) where $U = f^{-1}(V)$ (since f is a bijection). Hence f is continuous if and only if (V open in $Y \Rightarrow f^{-1}(V)$ open in X) (Theorem 2.8) if and only if (f(U) open in $Y \Rightarrow U$ open in X). (b) Let $\mathbf{g} = f^{-1} \colon Y \to X$. Then $\mathbf{g}^{-1} = f$. Hence, for $U \subset X$, $\mathbf{g}^{-1}(U) = f(U)$. So $\mathbf{g} = f^{-1}$ is continuous if and only if (U open in $X \Rightarrow \mathbf{g}^{-1}(U)$ open in Y) if and only if (U open in $X \Rightarrow f(U)$ open in Y).

2.10 Remark. This result indicates that the answer to Problem 2.1 is that a homeomorphism is a bijection which preserves the open sets and so 'the topology' is determined by the open sets. So we can specify a 'topology' on any set X by declaring which subsets of X are to be the open sets.

2.11 Definition. Given a set X, a *topology* on X is a collection τ of subsets of X with the following properties:

- (i) $\emptyset \in \tau, X \in \tau;$
- (ii) the intersection of any two subsets in τ is in τ :

$$U_1, U_2 \in \tau \Rightarrow U_1 \cap U_2 \in \tau;$$

(iii) the union of any collection of subsets in τ is in τ :

$$U_{\lambda} \in \tau$$
 for all $\lambda \in \Lambda \Rightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} \in \tau$.

A pair (X, τ) such that τ is a topology on X is called a *topological space*, usually denoted X when the topology is clear. The subsets in τ are called the *open subsets* of X (with the topology τ) or the *open sets* of the topology τ . Thus, given a topology τ on a set X the statements ' $U \in \tau$ ' and 'U is a open subset in X' have precisely the same meaning.

2.12 Definition. Suppose that (X, τ_1) and (Y, τ_2) are topological spaces. A function $f: X \to Y$ is *continuous* (with respect to τ_1 and τ_2) if, for each open subset V of Y (with the topology τ_2), the subset $f^{-1}(V)$ is open in X (with the topology τ_1), i.e.

$$V \in \tau_2 \Rightarrow f^{-1}(V) \in \tau_1.$$

The function $f: X \to Y$ is a homeomorphism if it is a continuous bijection with continuous inverse.

2.13 Proposition. If $f: X \to Y$ and $g: Y \to Z$ are continuous functions of topological spaces, then $g \circ f: X \to Z$ is a continuous function.

Proof. Exercise.

2.14 Proposition. A bijection $f: X \to Y$ between topological spaces is a homeomorphism if and only if

U is open in $X \Leftrightarrow f(U)$ is open in Y.

Proof. Exercise. (This is identical to the proof of Corollary 2.9 with Definition 2.12 playing the role of Theorem 2.8.) \Box

2.15 Remark. The original definition of topological space given by Felix Hausdorff in 1914 was equivalent to Definition 2.11 with the addition of a fourth condition on the set of open sets (now called the Hausdorff condition to be discussed in $\S4$).

- **2.16 Proposition.** (a) Suppose that X is a subset of Euclidean space. Then the open subsets of X defined by Definition 2.5 are the open subsets of a topology on X (called *the usual topology* on X).
 - (b) A function $f: X \to Y$ of subsets of Euclidean spaces is continuous according to Definition 0.21 if and only if it is continuous according to Definition 2.12 with respect to the usual topologies on X and Y.

Proof. (a) To see that the open sets of a subset of Euclidean space X given by Definition 2.5 define a topology on X we need to check the conditions in Definition 2.11.

(i) \emptyset and X are open in X by Examples 2.6(a) and (b).

(ii) Suppose that $U_1 \subset X$ and $U_2 \subset X$ are open in X. Then $U_1 \cap U_2$ is open in X (Exercise).

(iii) Suppose that $U_{\lambda} \subset X$ is open in X for all $\lambda \in \Lambda$. Then $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open in X (Exercise).

Hence these open sets are the open sets of a topology on X.

(b) This is a restatement of Theorem 2.8.

2.17 Example. (a) The *discrete topology* on a set X consists of all the subsets of X.

If X has the discrete topology and Y is any topological space, then all functions $f: X \to Y$ are continuous.

(b) The *indiscrete topology* on a set X is given by $\tau = \{\emptyset, X\}$.

If X has the indiscrete topology and Y is any topological space, then all functions $f: Y \to X$ are continuous.

(c) Suppose that $X = \{a, b\}$, a two point set. Then there are four topologies on X:

- (i) $\tau_1 = \{\emptyset, X\}$ (the indiscrete topology);
- (ii) $\tau_2 = \{\emptyset, \{a\}, X\};$
- (iii) $\tau_3 = \{\emptyset, \{b\}, X\};$
- (iv) $\tau_2 = \{\emptyset, \{a\}, \{b\}, X\}$ (the discrete topology).

The topological spaces (X, τ_2) and (X, τ_3) are homeomorphic with a homeomorphism given by $a \mapsto b, b \mapsto a$. Either of these topologies on a set of two elements is called the *Sierpinski topology*.

- (d) Suppose that $X = \{a, b, c\}$ is a three point set.
 - (i) $\{\emptyset, \{a, b\}, \{b, c\}, X\}$ is not a topology (intersection fails).
 - (ii) $\{\emptyset, \{a\}, \{b\}, X\}$ is not a topology (union fails).
- (e) The *identity function* $id_X : X \to X$, given by $id_X(x) = x$ for all $x \in X$, is continuous with respect to any topology on the set X (Exercise).
- (f) Given sets X and Y and a point $a \in Y$, the constant function $c_a \colon X \to Y$, given by $c_a(x) = a$ for all $x \in X$, is continuous with respect to any topologies on X and Y (Exercise).
- **2.18 Remark.** (a) By induction, the intersection of any *finite* number of open subsets in a topology is open. However, we do not require the intersection every collection of open subsets to be open. For example, in \mathbb{R} with the usual topology, $\bigcap_{n=1}^{\infty} (-1/n, 1/n) = \{0\}$ which is not open.
 - (b) Continuity does not imply that the image of each open set if open. For example, in \mathbb{R} with the usual topology the continuous map $f \colon \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ has f(-1, 1) = [0, 1) which is not open.

A continuous function $f: X \to Y$ of topological spaces for which U open in X implies that f(U) is open in Y is called an *open map*.

2.19 Definition. A subset A of a topological space X is *closed* when its complement $X \setminus A$ is open.

2.20 Proposition. In a topological space X,

- (i) \emptyset and X are closed;
- (ii) the union of any pair of closed subsets is closed;
- (iii) the intersection of any collection of closed subsets is closed.

Furthermore, any collection of subsets of X satisfying these conditions is the set of closed subsets of a topology on X.

Proof. This is immediate from Definition 2.11 using the set theoretic properties of complements of unions and intersections (the de Morgan Laws, Proposition 0.5(iv)).

2.21 Remark. The word 'closed' is not the same as 'not open'. For example, in \mathbb{R} with the usual topology, [0,1) is neither open nor closed whereas \emptyset is both open and closed. In general, most subsets are neither open nor closed. Some subsets are both open and closed.

2.22 Definition. Suppose that X is a topological space. Then a collection \mathcal{B} of open subsets in X is called a *basis* for the topology on X if every non-empty open subset in X can be expressed as a union of open subsets in \mathcal{B} .

2.23 Proposition. A basis for the usual topology on \mathbb{R} is given by

$$\mathcal{B} = \{ (a, b) \mid a, b \in \mathbb{R}, a < b \}.$$

Proof. Given an open set $U \subset \mathbb{R}$ (in the usual topology) then, for each $x \in U$ there exists $\varepsilon_x > 0$ such that $B_{\varepsilon_x}(x) = (x - \varepsilon_x, x + \varepsilon_x) \subset U$. Then $U = \bigcup_{x \in U} (x - \varepsilon_x, x + \varepsilon_x)$ (the empty union if $U = \emptyset$).

2.24 Remark. The material in §1 about paths, path-connectedness and cut-points extends from subsets of Euclidean spaces to all topological spaces.

2.25 Definition. For a subset $A \subset X$ of a topological space X the *interior* A° is defined to be the union of all open subsets U of X, which are contained in A.

The *closure* A is defined as the intersection of all closed subsets of X which contain A.

The boundary ∂A is defined as the difference $\overline{A} \setminus A^{\circ}$.

2.26 Definition. An open neighbourhood of a point x in a topological space X is an open subset which contains x.

2.27 Exercise. A point x is contained in the interior of $A \subset X$ if and only if there exists an open neigbourhood U of x, which is contained in A.

A point $x \in X$ is contained in A if and only if every open neighbourhood of x intersects A.

A point $x \in X$ is contained in ∂A if and only if every open neighbourhood of x intersects A and its complement $X \setminus A$.

2.28 Example. The consider the interval J = [0, 1) as a subset of \mathbb{R} with the usual topology. Then we have $J^{\circ} = (0, 1)$ and $\overline{J} = [0, 1]$ and $\partial J = \{0, 1\}$. Indeed, (0, 1) is an open subset, which is contained in J. Hence, $(0, 1) \subset J^{\circ}$, but every open subset which contains 0, will also contain the interval $(-\epsilon, \epsilon) \not\subset J$ for $\epsilon > 0$ sufficiently small. Hence, 0 is not cointained in the interior.

Similarly [0, 1] is a closed subset, which contains J. Hence, $[0, 1) \subset \overline{J} \subset [0, 1]$. Hence, \overline{J} has to be either [0, 1) or [0, 1]. Since the closure of a set is a closed by definition. it follows, that $\overline{J} = [0, 1]$. Now, we obtain $\partial J = [0, 1] \setminus (0, 1) = \{0, 1\}$.