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MATH31052 Topology

3 Constructing New Spaces

Subspaces

3.1 Remark. Given a topological space X, is there a natural way of
putting a topology on a subset X1 ⊂ X ? One desirable property is the
following since we do not expect the codomain of a map to affect whether
or not it is continuous.

For all topological spaces Y ,
f : Y → X1 is continuous ⇔ i ◦ f : Y → X is continous.

Here i : X1 → X denotes the inclusion map i(x) = x for all x ∈ X1.

There is just one topology on X1 which has this property and this is known
as the subspace topology. This property is known as the universal property
of the subspace topology.

3.2 Definition. Given a topological space (X, τ) and a subset X1 ⊂ X,
then the subspace topology on X1 (induced by τ) is given by τ1 = {U ∩X1 |
U ∈ τ }, i.e. V ⊂ X1 is open in X1 if and only if V = U ∩ X1 where U is
some open set in X.

With this topology we say that X1 is a subspace of X.

3.3 Proposition. Given a topological space X and a subset X1 ⊂ X,
Definition 3.2 defines a topology on X1. With this topology,

(a) the inclusion map i : X1 → X is continuous;

(b) given a continuous function f : X → Y (where Y is an topological
space), the restriction f |X1 = f ◦ i : X1 → Y is continuous;

(c) (the universal property) a function f : Y → X1 (where Y is any topo-
logical space) is continuous if and only if i ◦ f : Y → X is continuous.

Proof. To see that Definition 3.2 defines a topology we check the properties
in Definition 2.11.
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(i) ∅ and X are open in X and so ∅∩X1 = X and X ∩X1 = X1 are open
in X1.

(ii) Given V1 and V2 open in X1 then Vi = Ui∩X for Ui open in X (i = 1,
2). Hence V1 ∩ V2 = (U1 ∩X1) ∩ (U2 ∩X1) = (U1 ∩ U2) ∩X1 is open
in X1 since U1 ∩ U2 is open in X.

(iii) Given Vλ open in X1 for λ ∈ Λ. Then Vλ = Uλ ∩X1 where Uλ is open
in X (λ ∈ Λ). Hence

⋃
λ∈Λ Vλ =

⋃
λ∈Λ(Uλ ∩X1) =

(⋃
λ∈Λ Uλ

)
∩X is

open in X1 since
⋃
λ∈Λ Uλ is open in X.

(a) Given U open in X then i−1(U) = U ∩ X1 is open in X1 and so i is
continuous.

(b) This follows from the fact the composition of continuous functions is
continuous (Proposition 2.13).

(c) ‘⇒’: This follows from the fact that the composition of continuous
functions is continuous.

‘⇐’: Suppose that f : Y → X1 is a function from a topological space
Y such that i ◦ f : Y → X is continuous. Then given V open in X1,
V = U ∩X1 = i−1(U) for U open in X. Thus f−1(V ) = f−1i−1(U) =
(i◦f)−1(U) is open in Y since i◦f is continuous. Hence f is continuous.

3.4 Remark. (a) The subspace topology on X ⊂ Rn induced by the
usual topology on Rn is the usual topology on X. [Exercise. Note
that BX

ε (x) = Bε(x) ∩X for x ∈ X and ε > 0.]

(b) Given a subspace X1 of a topological space X it is not in general true
that an open [closed] subset of X1 is open [closed] in X. For exam-
ple, (1/2, 1] is open in [0, 1] with the usual topology (since (1/2, 1] =
(1/2, 3/2) ∩ [0, 1]) but is not open in R.

3.5 Proposition. Given a subspace X1 of a topological space X, a subset
B ⊂ X1 is closed in X1 if and only if B = A ∩X1 where A is some closed
set in X.

Proof. Exercise.

3.6 Proposition. Suppose that X1 is a subspace of a topological space
X. Then all closed subsets of the subspace X1 ⊂ X are closed in X if and
only if X1 is a closed subset of X.
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Proof. ‘⇒’: If all closed subsets of X1 are closed in X then, since X1 is
closed in X1, it is closed in X.

‘⇐’: Suppose that X1 is a closed subset of X. Then, given B closed in X1,
B = A ∩X1 where A is closed in X (by Proposition 3.5) and so B is closed
in X (the intersection of two closed subsets).

3.7 Theorem (Gluing Lemma). Suppose that X1 and X2 are closed
subspaces of a topological space X such that X = X1 ∪X2. Suppose that
f1 : X1 → Y and f2 : X2 → Y are continuous functions to a topological
space Y such that, for all x ∈ X1 ∩ X2, f1(x) = f2(x). Then the function
f : X → Y defined by f(x) = f1(x) if x ∈ X1, f(x) = f2(x) if x ∈ X2 is
well-defined and continuous.

Proof. f is well-defined by the condition on f1 and f2 in the theorem. To
see that f is continuous it is sufficient, by Problems 2, Question 8, to prove
that the inverse image of a closed set in Y is closed in X. Given A closed
in Y , f−1

j (A) is closed in Xj (j = 1,2) since fj is continuous and so, using

Proposition 3.6, f−1
j (A) is closed in X since Xj is closed in X. If follows

that f−1(A) = f−1
1 (A) ∪ f−1

2 (A) is closed in X and so f is continuous.

3.8 Example. This result gives a justification for the continuity of the
product of two paths σ1 ∗ σ2 in a topological space X (generalizing Defi-
nition 1.13(c) to topological spaces). For suppose that σ1 : [0, 1] → X and
σ2 : [0, 1]→ X are two paths in X so that σ1(1) = σ2(0). Then the product
path σ1 ∗ σ2 : [0, 1]→ X is given by

σ1 ∗ σ2(s) =

{
σ1(2s) for 0 6 s 6 1/2,
σ2(2s− 1) for 1/2 6 s 6 1.

(generalizing Definition 1.13(c)). Define

f1 : [0, 1/2] 7→ X to be the composition [0, 1/2]
s 7→2s−→ [0, 1]

σ1−→ X, and

f2 : [1/2, 1]→ X to be the composition [1/2, 1]
s 7→2s−1−→ [0, 1]

σ2−→ X.

Then f1 and f2 are compositions of continuous functions and so continuous.
We can apply the Gluing Lemma to these two functions since [0, 1/2] and
[1/2, 1] are closed in [0, 1], the intersection [0/1/2] ∩ [1/2, 1] = {1/2} and
f1(1/2) = σ1(1) = σ2(0) = f2(1/2). The well-defined continuous function
given by the Lemma is σ1 ∗ σ2.
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Product spaces

3.9 Remark. Given topological spaces X1 and X2, is there a natural way
of putting a topology on the cartesian product X1 × X2 ? One desirable
property is the following since it would generalize the familiar property that
a function into Rn is continuous if and only if the coordinate functions are
continuous (see Remarks 0.22(b)).

For all topological spaces Y ,
f : Y → X1 ×X2 is continuous

⇔
pi ◦ f : Y → Xi is continous for i = 1, 2.

Here pi : X1 × X2 → Xi denotes the projection map pi(x1, x2) = xi for all
(x1, x2) ∈ X1 ×X2.

There is just one topology on X1 × X2 which has this property and this
is known as the product topology. This property is known as the universal
property of the product topology.

3.10 Definition. Given topological spaces X1 and X2. The product topol-
ogy onX1×X2 is the topology with a basis {U1×U2 | Ui open in Xi for i = 1, 2 }.
With this topology X1 ×X2 is called the product of the spaces X1 and X2.

3.11 Proposition. Given topological spaces X1 and X2, the set given
above is the basis for a topology on X1 ×X2. With this topology,

(a) the projection functions pi : X1 ×X2 → Xi are continuous;

(b) (the universal property) a function f : Y → X1×X2 (for Y any topologi-
cal space) is continuous if and only if the coordinate functions pi◦f : Y → Xi

are continuous for i = 1, 2.

Proof. To see that the collection of subsets in Definition 3.10 is a basis for
a topology on X1×X2 we use the result of Problems 2, Question 11. Given
two basic open sets U1×U2 and U ′1×U ′2 in X1×X2 (i.e. Ui and U ′i are open
in Xi for i = 1, 2), then

(U1 × U2) ∩ (U ′1 × U ′2) = (U1 ∩ U ′1)× (U2 ∩ U ′2)

(by Proposition 0.7(iii)) which is also a basic open set since Ui ∩ U ′i is open
in Xi for i = 1, 2.
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(a) For U open in X1, p−1
1 (U) = U ×X2 which is open in X1 ×X2. Hence

p1 is continuous. Similarly, p2 is continuous.

(b) ‘⇒’: This follows from the continuity of a composition of continuous
functions.

‘⇐’: To prove that f : Y → X1 × X2 is continuous it is sufficient to prove
that f−1(U1 × U2) is open in Y for basic open sets U1 × U2 by Problems 2,
Question 9. Given such a basic open set and a function f : Y → X1×X2 such
that the coordinate functions p1◦f and p2◦f are continuous, (p1◦f)−1(U1) =
f−1p−1

1 (U1) = f−1(U1 × X2) is open in Y and, similarly, (p2 ◦ f)−1(U2) =
f−1(X1 ×U2) is open in Y . Hence, by taking the intersection of these open
sets, f−1(U1×X2)∩f−1(X1×U2) = f−1(U1×X2∩X1×U2) = f−1(U1×U2)
is open in Y and so f is continuous.

3.12 Remark. (a) In the same way we can define the product topology
on any finite product X1×X2×· · ·×Xn of topological spaces: a basis
is given by subsets of the form U1×U2× · · · ×Un where Ui is an open
subset of Xi.

(b) For each point x2 ∈ X2, the subspace X1 × {x2} of the product space
X1 ×X2 is homeomorphic to X1.

To see this we prove that the obvious bijection f : X1 → X1 × {x2}
given by f(x) = (x, x2) for x ∈ X1 is a homeomophism by using using
the universal properties of the product topology and the subspace
topology.

First of all, f is continuous if and only if i1 = i ◦ f : X1 → X1 ×
x2 → X1×X2 is continuous (by the universal property of the subspace
topology) if and only if p1 ◦ i1 = IX1 : X1 → X1 is continuous and
p2 ◦ i1 = cx2 : X1 → X2 is continuous (by the universal property of the
product topology) and these maps are continuous by Examples 2.17(e)
and (f). Hence f is continuous.

Secondly, the function f−1 : X1 × {x2} → X1 is the restriction of the
projection map p1 : X1 × X2 → X1 which is continuous by Proposi-
tion 3.11(a) and so is continuous by Proposition 3.3(b).

(c) Given subsets Y1 ⊂ X1 and Y2 ⊂ X2 of topological spaces X1 and
X2 then Y1 × Y2 may be topologized as (i) a subspace of the product
space X1×X2, and (ii) the product of the subspaces Y1 and Y2. These
two topologies are the same. [Exercise. Use the universal properties
to show that the identity map IY1×Y2 : (Y1 × Y2, τ1)→ (Y1 × Y2, τ2) is
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a homeomorphism where τ1 is the topology (i) and τ2 is the topology
τ2.]

3.13 Example. (a) Euclidean n-space Rn with the usual topology is
homeomorphic to the product space Rn−1×R (with the usual topolo-
gies on R and Rn−1. [Exercise.]

(b) If X and Y have the discrete topology then the product topology on
X × Y is the discrete topology.

(c) The product space [0, 1]× S1 is called the cylinder.

(d) The product space S1 × S1 is called the torus.

(e) The product space D2 × S1 is called the solid torus.
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