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Quotient spaces

3.14 Definition. Suppose that ¢: X — Y is a surjection from a topolog-
ical space X to a set Y. Then the quotient topology (or the identification
topology) on'Y determined by q is given by the condition V' C Y is open in YV’
if and only if ¢~ (V) is open in X. With this topology we call Y a quotient
space of X.

3.15 Proposition. Given a surjection g: X — Y from a topological space
X to aset Y, the above definition gives a topology on Y. With this topology,

(a) the function ¢g: X — Y is continuous;

(b) (the universal property) a function f:Y — Z to a topological space Z
is continuous if and only if the composition foq: X — Z is continuous.

Proof. Exercise. You might use the proof of Proposition 3.3 as a model. [

3.16 Remark. Given an equivalence relation ~ on a topological space X
there is a surjection q: X — X/~ to the set of equivalence classes given
by sending each element of X to its equivalence class: ¢(x) = [z] = {2’ €
X | 2’ ~ x} (see Definition 0.18). We can give X/~ the quotient topology
determined by gq. We call such a quotient space an identification space of X.

3.17 Definition. Suppose that A is a non-empty subset of a topological
space X. Then we may define an equivalence relation on X by

x~a < x=2a"orboth x and 2’ € A.

In this case we write the set of equivalence classes X/~ as X/A. With the
quotient topology this is called the identification space obtained from X by
collapsing A to a point. Notice that, as a set, X/A has one point for each
point z € X \ A (since [z] = {z}) and one point corresponding to all of A
(since if a € A, [a] = A).

3.18 Theorem. Suppose that f: X — Y is a continuous surjection of
topological spaces. Then we may define an equivalence relation on X by

z~al e fz) = f(2)

and then the bijection F': X/~ — Y induced by f, i.e. F([z]) = f(x) for
x € X (see Theorem 0.20), is a continuous bijection of topological spaces.



Proof. The proof that F' is a bijection is the proof of Theorem 0.20.

The continuity of F' follows from the universal property of the quotient
topology since Fog(z) = F(q(z)) = F([z]) = f(z) so that Fog = f: X —»Y
which is continuous. O

3.19 Example. [0,1]/{0,1} = S*.

The homeomorphism is induced by the continuous function f: [0,1] — S*
given by f(t) = (cos2nt, sin 27t).

To see this notice that f is continuous (since the component functions are
continuous) and

f)=ft)est=t ortt €{0,1}. (1)

Then, by Theorem 3.18, f induces a continuous bijection F': [0,1]/{0,1} —
St by F[t] = f(t). It will follow from a result in §5 that this is a homeo-

morphism but this may be shown directly as follows.
The inverse F~1: St — [0,1]/{0,1} is given by

Fl(x) = q(cos™Y(z1)/2) for xo > 0,

q(1 —cos™Y(xy)/2m) for x5 <0,
writing x = (x1,x2).This uses the principal value of the inverse cosine,
cos~!: [~1,1] — [0, 7] which is a continuous function, and the continuous

quotient map ¢: [0,1] — [0,1]/{0,1}. This function is continuous on the
two closed subsets {x € S |22 > 0} and {x € S | 73 < 0}, and agrees
on their intersection {(£1,0)}. Hence, by the Gluing Lemma, F~1: St —
[0,1]/{0,1} is continuous and so F' is a homeomorphism.

3.20 Example. (a) There is a continuous bijection D" /S™"~! — S™ (which
is in fact a homeomorphism). Define f: D™ — S™ by

x| — |x]|?
f(x) = <2er||"’1 _ 2rx\).

This is continuous since the component functions are continuous (ac-
tually this formula doesn’t make sense if x = 0 but, as x — O,
f(x) — (0,1) and so if we put f(0) = (0,1) we get a continuous func-
tion). We can check that |f(x)| =1 so that f(x) € S™. Giveny € S,
F6) = y & 1= 2x| = yor and 2(/x[ = <P /%)X = (91, -, 9).
This means that for y € S™ there is a unique x € D" such that
f(x) =y solong as |ynt1| < 1. For y,11 =1, f(x) =(0,1) & x=0.



For y,+1 = —1, f(x) = (0,—1) < |x| = 1. Hence f is a continuous
surjection and

fx)=f(x)ex=xorxx s (2)

Define F': D"/S"~1 — S" by F([x]) = f(x). This is well-defined and
an injection by (2). It is a surjection since f is a surjection. Thus F
is a continuous bijection. It will follow from a result in §5 that F'is a
homeomorphism (a direct proof is a little awkward in this case).

There is an equivalence relation on the unit square I? = I x I (where
I = [0,1] with the usual topology) such that there is a continuous
bijection 12/ ~ — I x S!, the cylinder (which is in fact a home-
omorphism). To see this, define a surjection f: I? — I x S! by
f(z,y) = (=, exp(2miy)) where we think of S' as {z € C | |2] < 1}
using the standard identification C = R2. This function is continuous
by the universal property of the product topology since the compo-
nent functions are continuous and so Theorem 3.18 applies giving a
continuous bijection F': 12/~ — I x S'. Tt will follow from a result in
§5 that this is a homeomorphism. It is possible to prove directly that
F~1 is continuous using the Gluing Lemma using a argument like of
that at the end of Example 3.19.

The equivalence relation on I? can be described explicitly by

(1'7 ): (x/ayl) or
(r,y) ~ (2,y) &< z=2',y=0andy=1or
x=2',y=1and ¢y =0.

We say that this equivalence relation is generated by the relation
(2,0) ~ (x,1) for all x € I (since the other relations are forced by
reflexivity and symmetry).

There is an equivalence relation on the unit square I? such that there
is a continuous bijection I?/~ — S x S! (and again this is in fact a
homeomorphism).

This is left as an exercise. The equivalence relation is generated by
(,0) ~ (x,1) and (0,y) ~ (1,y) for all z, y € I

We may generate an equivalence relation on I? by (z,0) ~ (1 — z,1)
for all « € I. The identification space 12/~ is called the Mébius band.



(e) We may generate an equivalence relation on I2 by (x,0) ~ (x,1) and
(0,9) ~ (1,1 —y) for all 2, y € I. The identification space 1%/~ is
called the Klein bottle.

(f) We may define an equivalence relation on I? by (z,0) ~ (1 — z,1)
and (0,y) ~ (1,1 —y) for all z, y € I. The identification space I?/~
is homeomorphic to a space called the projective plane, denoted P2,
usually defined as follows.

3.21 Definition. Define an equivalence relation on S™ by x ~ #£x for
all x € S™. Then the identification space S™/~ is called (real) projective
n-space and is denoted P™ (or sometimes RP"™).

3.22 Remark. The formal proof that the identification space of Exam-
ple 3.20(f) is homeomorphic to the projective plane P? is omitted.



