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MATH31052 Topology

Quotient spaces

3.14 Definition. Suppose that q : X → Y is a surjection from a topolog-
ical space X to a set Y . Then the quotient topology (or the identification
topology) on Y determined by q is given by the condition V ⊂ Y is open in Y
if and only if q−1(V ) is open in X. With this topology we call Y a quotient
space of X.

3.15 Proposition. Given a surjection q : X → Y from a topological space
X to a set Y , the above definition gives a topology on Y . With this topology,

(a) the function q : X → Y is continuous;

(b) (the universal property) a function f : Y → Z to a topological space Z
is continuous if and only if the composition f ◦ q : X → Z is continuous.

Proof. Exercise. You might use the proof of Proposition 3.3 as a model.

3.16 Remark. Given an equivalence relation ∼ on a topological space X
there is a surjection q : X → X/∼ to the set of equivalence classes given
by sending each element of X to its equivalence class: q(x) = [x] = {x′ ∈
X | x′ ∼ x } (see Definition 0.18). We can give X/∼ the quotient topology
determined by q. We call such a quotient space an identification space of X.

3.17 Definition. Suppose that A is a non-empty subset of a topological
space X. Then we may define an equivalence relation on X by

x ∼ x′ ⇔ x = x′ or both x and x′ ∈ A.

In this case we write the set of equivalence classes X/∼ as X/A. With the
quotient topology this is called the identification space obtained from X by
collapsing A to a point. Notice that, as a set, X/A has one point for each
point x ∈ X \ A (since [x] = {x}) and one point corresponding to all of A
(since if a ∈ A, [a] = A).

3.18 Theorem. Suppose that f : X → Y is a continuous surjection of
topological spaces. Then we may define an equivalence relation on X by

x ∼ x′ ⇔ f(x) = f(x′)

and then the bijection F : X/∼ → Y induced by f , i.e. F ([x]) = f(x) for
x ∈ X (see Theorem 0.20), is a continuous bijection of topological spaces.
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Proof. The proof that F is a bijection is the proof of Theorem 0.20.
The continuity of F follows from the universal property of the quotient
topology since F ◦q(x) = F

(
q(x)

)
= F ([x]) = f(x) so that F ◦q = f : X → Y

which is continuous.

3.19 Example. [0, 1]/{0, 1} ∼= S1.

The homeomorphism is induced by the continuous function f : [0, 1] → S1

given by f(t) = (cos 2πt, sin 2πt).

To see this notice that f is continuous (since the component functions are
continuous) and

f(t) = f(t′)⇔ t = t′ or t, t′ ∈ {0, 1}. (1)

Then, by Theorem 3.18, f induces a continuous bijection F : [0, 1]/{0, 1} →
S1 by F [t] = f(t). It will follow from a result in §5 that this is a homeo-
morphism but this may be shown directly as follows.
The inverse F−1 : S1 → [0, 1]/{0, 1} is given by

F−1(x) =

{
q(cos−1(x1)/2π) for x2 > 0,
q(1− cos−1(x1)/2π) for x2 6 0,

writing x = (x1, x2).This uses the principal value of the inverse cosine,
cos−1 : [−1, 1] → [0, π] which is a continuous function, and the continuous
quotient map q : [0, 1] → [0, 1]/{0, 1}. This function is continuous on the
two closed subsets {x ∈ S1 | x2 > 0 } and {x ∈ S1 | x2 6 0 }, and agrees
on their intersection {(±1, 0)}. Hence, by the Gluing Lemma, F−1 : S1 →
[0, 1]/{0, 1} is continuous and so F is a homeomorphism.

3.20 Example. (a) There is a continuous bijectionDn/Sn−1 → Sn (which
is in fact a homeomorphism). Define f : Dn → Sn by

f(x) =

(
2
√
|x| − |x|2
|x|

x, 1− 2|x|
)
.

This is continuous since the component functions are continuous (ac-
tually this formula doesn’t make sense if x = 0 but, as x → 0,
f(x)→ (0, 1) and so if we put f(0) = (0, 1) we get a continuous func-
tion). We can check that |f(x)| = 1 so that f(x) ∈ Sn. Given y ∈ Sn,
f(x) = y ⇔ 1 − 2|x| = yn+1 and 2(

√
|x| − |x|2/|x|) x = (y1, . . . , yn).

This means that for y ∈ Sn there is a unique x ∈ Dn such that
f(x) = y so long as |yn+1| < 1. For yn+1 = 1, f(x) = (0, 1)⇔ x = 0.
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For yn+1 = −1, f(x) = (0,−1) ⇔ |x| = 1. Hence f is a continuous
surjection and

f(x) = f(x′)⇔ x = x′ or x,x′ ∈ Sn−1. (2)

Define F : Dn/Sn−1 → Sn by F ([x]) = f(x). This is well-defined and
an injection by (2). It is a surjection since f is a surjection. Thus F
is a continuous bijection. It will follow from a result in §5 that F is a
homeomorphism (a direct proof is a little awkward in this case).

(b) There is an equivalence relation on the unit square I2 = I × I (where
I = [0, 1] with the usual topology) such that there is a continuous
bijection I2/∼ → I × S1, the cylinder (which is in fact a home-
omorphism). To see this, define a surjection f : I2 → I × S1 by
f(x, y) =

(
x, exp(2πiy)

)
where we think of S1 as { z ∈ C | |z| < 1 }

using the standard identification C ∼= R2. This function is continuous
by the universal property of the product topology since the compo-
nent functions are continuous and so Theorem 3.18 applies giving a
continuous bijection F : I2/∼ → I × S1. It will follow from a result in
§5 that this is a homeomorphism. It is possible to prove directly that
F−1 is continuous using the Gluing Lemma using a argument like of
that at the end of Example 3.19.

The equivalence relation on I2 can be described explicitly by

(x, y) ∼ (x′, y′)⇔


(x, y) = (x′, y′) or
x = x′, y = 0 and y = 1 or
x = x′, y = 1 and y′ = 0.

We say that this equivalence relation is generated by the relation
(x, 0) ∼ (x, 1) for all x ∈ I (since the other relations are forced by
reflexivity and symmetry).

(c) There is an equivalence relation on the unit square I2 such that there
is a continuous bijection I2/∼ → S1 × S1 (and again this is in fact a
homeomorphism).

This is left as an exercise. The equivalence relation is generated by
(x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) for all x, y ∈ I

(d) We may generate an equivalence relation on I2 by (x, 0) ∼ (1 − x, 1)
for all x ∈ I. The identification space I2/∼ is called the Möbius band.
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(e) We may generate an equivalence relation on I2 by (x, 0) ∼ (x, 1) and
(0, y) ∼ (1, 1 − y) for all x, y ∈ I. The identification space I2/∼ is
called the Klein bottle.

(f) We may define an equivalence relation on I2 by (x, 0) ∼ (1 − x, 1)
and (0, y) ∼ (1, 1 − y) for all x, y ∈ I. The identification space I2/∼
is homeomorphic to a space called the projective plane, denoted P 2,
usually defined as follows.

3.21 Definition. Define an equivalence relation on Sn by x ∼ ±x for
all x ∈ Sn. Then the identification space Sn/∼ is called (real) projective
n-space and is denoted Pn (or sometimes RPn).

3.22 Remark. The formal proof that the identification space of Exam-
ple 3.20(f) is homeomorphic to the projective plane P 2 is omitted.

4


