MATH31052 Topology

4 Hausdorff Spaces

4.1 Definition. Suppose that (a_n) is a sequence of points in a topological space X and $a \in X$. Then $a_n \to a$ (as $n \to \infty$) when, for each open set U containing a, there exists an integer N such that

$$n \ge N \Rightarrow a_n \in U.$$

In this case we say that the sequence (a_n) converges to a or a is a limit of the sequence (a_n) .

- **4.2 Example.** (a) For $X = \mathbb{R}^n$ with the usual topology this is equivalent to the usual definition.
 - (b) For X a discrete space, $a_n \to a$ means that there is an integer N such that $n \ge N \Rightarrow a_n = a$ since $\{a\}$ is an open set and $a_n \in \{a\} \Rightarrow a_n = a$.
 - (c) For X an indiscrete space, every sequence converges to every point since the only open set containing $a \in X$ is X.
 - (d) For X with the Sierpinski topology $\{\emptyset, \{a\}, X\}$, $a_n \to a$ if and only if eventually $a_n = a$ (as in (b)), but $a_n \to b$ for all sequences (as in (c)).

4.3 Definition. The topological space X is *Hausdorff* (or T_2) if, for each distinct pair of points $x, y \in X$, there exist open sets U and V in X such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

4.4 Proposition. In a Hausdorff space a sequence can have at most one limit. So in this case we can refer to *the* limit of a convergent sequence and denote it by $\lim_{n\to\infty} a_n$.

Proof. Exercise (a proof by contradiction).

4.5 Proposition. A subset $X \subset \mathbb{R}^n$ with the usual topology is Hausdorff.

Proof. Exercise.

4.6 Proposition. Points are closed in a Hausdorff space, i.e. given $a \in X$, a Hausdorff space, the singleton subset $\{a\}$ is a closed subset.

Proof. Exercise.

4.7 Remark. Hausdorff's original definition of a topological space (1914) was equivalent to our definition of a Hausdorff or T_2 space. A topological space in which singleton subsets are closed is called a *Fréchet space* or a T_1 space.

4.8 Proposition. (a) A subspace of a Hausdorff space is Hausdorff.

- (b) The disjoint union of two Hausdorff spaces is Hausdorff.
- (c) The product of two Hausdorff spaces is Hausdorff.

Proof. (a) and (b) Exercises.

(c) Suppose that X_1 and X_2 are Hausdorff spaces and that $(x_1, x_2), (x'_1, x'_2) \in X_1 \times X_2$ with $(x_1, x_2) \neq (x'_1, x'_2)$. Then $x_1 \neq x'_1$ or $x_2 \neq x'_2$.

If $x_1 \neq x'_1$, since X_1 is Hausdorff there are open subsets $U, V \subset X_1$ such that $x_1 \in U, x_2 \in V$ and $U \cap V = \emptyset$. Then $U \times X_2$ and $V \times X_2$ are disjoint open subsets of $X_1 \times X_2$ as required.

There is a similar argument if $x_2 \neq x'_2$.

So in either case (x_1, x_2) and (x'_1, x'_2) lie in disjoint open subsets of $X_1 \times X_2$ as required to prove that $X_1 \times X_2$ is Hausdorff.

4.9 Remark. A quotient space of a Hausdorff space is not necessarily Hausdorff. For example, define an equivalence relation on the closed interval [-1,1] with the usual topology (a Hausdorff space by Proposition 4.5) by $t \sim \pm t$ for |t| < 1. Then the quotient space $[-1,1]/\sim$ is not Hausdorff.

Proof. Consider the points $q(-1) = [-1] = \{-1\}$ and $q(1) = [1] = \{1\} \in [-1, 1]/\sim$, writing $q: [-1, 1] \to [-1, 1]/\sim$ for the quotient map as usual.

Suppose for contradiction that there are disjoint open subsets U and $V \subset [-1,1]/\sim$ such that $[-1] \in U$ and $[1] \in V$.

Since $[-1] \in U$, $q^{-1}(U) \subset [-1,1]$ is an open set containing -1 and so, by the definition of an open set in the usual topology, since $-1 \in q^{-1}(U)$, there exists $\varepsilon_1 > 0$ such that $B_{\varepsilon_1}^{[-1,1]} = [-1, -1 + \varepsilon_1) \subset q^{-1}(U)$. This means that $(1 - \varepsilon_1, 1) \subset U$ since each point is equivalent to a point of $[-1, -1 + \varepsilon_1)$.

Similarly, since $[1] \in V$, there exists $\varepsilon_2 > 0$ such that $(1 - \varepsilon_2, 1] \subset q^{-1}(V)$. But then, for $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$, $1 - \varepsilon/2 \in (1 - \varepsilon, 1) = (1 - \varepsilon_1, 1) \cap (1 - \varepsilon_2, 1]$ subset $q^{-1}(U) \cap q^{-1}(V) = q^{-1}(U \cap V)$ so that $[1 - \varepsilon/2] \in U \cap V$ which are therefore not disjoint. So there do not exist disjoint open subsets of $[-1, 1]/\sim$ containing [-1] and [1]. **4.10 Remark.** $X = [-1,1]/\sim$ is covered by two open subsets, which are both homeomorphic to the unit interval [0,1]. Indeed, consider $U^- = X \setminus \{[1]\}$. Then $q^{-1}(U^-) = [-1,1)$ which is open in [-1,1]. On the other hand,

$$\varphi \colon [0,1] \to U^-; t \mapsto [-t]$$

gives a homeomorphism with inverse induced by

$$f: [-1,1) \to [0,1]; t \mapsto |t|.$$

Indeed, one has f(t) = f(s) if and only if $t \sim s$. Here, continuity follows by the continuity of $t \mapsto -t$, $q, t \mapsto |t|$ and by the universal property of the quotient topology *[Exercise]*. Similarly $U^+ = X \setminus \{[-1]\}$ is an open subset homeomorphic to [0, 1].