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5 Compactness

5.1 Definition. A collection F of open subsets of a topological space X
is called an open cover for a subset A ⊂ X if A ⊂

⋃
U∈F U . If F and F ′ are

open covers for A and F ′ ⊂ F then F ′ is a subcover of F .
A subset K of a topological space X is compact if each open cover for K has
a finite subcover. In particular, if X itself is a compact subset then we say
that it is a compact topological space.

5.2 Example. (a) A finite subset A = { a1, a2, . . . , an } of any topologi-
cal space X is compact.

Proof. Given an open cover F for A we can choose, for each ai, an
open set Ui ∈ F such that ai ∈ Ui. Then {U1, U2, . . . , Un } is the
required finite subcover of F for A. Hence A is a compact subset.

(b) A subset of a discrete topological space is compact if and only if it is
finite

Proof. ‘⇐’: This is a particular case of 5.2(a).
‘⇒’: We prove the contrapositive. Suppose that A ⊂ X is an infinite
subset of a discrete topological space. Then F =

{
{a} | a ∈ A

}
is an

open cover for A with no finite subcover. Hence A is not compact.

(c) The subset (0, 1) of R with the usual topology is not compact.

Proof. F = { (a, 1) | a ∈ (0, 1) } is an open cover for (0, 1) since, given
x ∈ (0, 1), x ∈ (x/2, 1). This has no finite subcover for (0, 1) since,
given { (a1, 1), (a2, 1), . . . , (an, 1) } ⊂ F ,

⋃n
i=1(ai, 1) = (a, 1) where a =

min{ai} and a/2 /∈ (a, 1).

(d) R with the usual topology is not compact.

Proof. F = { (−n, n) | n ∈ N } is an open cover for R with no finite
subcover since

⋃k
i=1(−ni, ni) = (−n, n) where n = max{ni} and n +

1 /∈ (−n, n).
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(e) Given a non-compact topological space (X, τ) consider the set X∗ =
X t {∞} and the topology

τ∗ = τ ∪ {X \ C ∪ {∞} | C ⊂ X compact}.

Then (X∗, τ∗) is a compact topological space (called the one-point
compactification) [Excercise].

5.3 Proposition. Given a subset X1 of a topological space X. The
subspace X1 is compact if and only if the subset X1 is a compact subset of
the topological space X.

Proof. Exercise.

5.4 Proposition. Suppose that f : X → Y is a continuous function of
topological spaces and K is a compact subset of X. Then f(K) is a compact
subset of Y .

Proof. Suppose that F is an open cover for f(K). Let f−1(F) = {f−1(V ) |
V ∈ F}. Then f−1(F) is an over cover for K since, given a ∈ K, f(a) ∈
f(K) so that f(a) ∈ V for some V ∈ F . Hence a ∈ f−1(V ) for some V ∈ F .
Now, since K is compact, f−1(F) has a finite subcover for K,

{ f−1(V1), f−1(V2), . . . , f−1(Vn) }.

. Thus, given b ∈ f(K), b = f(a) for some a ∈ K. Then a ∈ f−1(Vi) for
some i, 1 6 i 6 n, so that b = f(a) ∈ Vi. Hence {V1, V2, . . . , Vn } is a finite
subcover of F for f(K).
Hence f(K) is compact.

5.5 Proposition. Compactness is a topological property, i.e. if X and Y
are homeomorphic spaces then X is compact if and only if Y is compact.

Proof. Suppose that X ∼= Y .
Suppose that X is compact. Then a homeomorphism is a continuous bi-
jection f : X → Y and so, in particular, a continuous surjection. Hence
Y = f(X) is compact by Proposition 5.4.
Similarly, if Y is compact then X is compact.
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Compactness and accumulation points

5.6 Definition. Given a sequence (an) in a topological space X. Then
a ∈ X is called an accumulation point if every open neighbourhood U 3 a
contains infinitely many members of the sequence, i.e. an ∈ U for infinietly
many n ∈ N.

5.7 Theorem. Every sequence in a compact topological space X has an
accumulation point.

Proof. Assume there is no accumulation point. Then for every x ∈ X there is
open neighbourhood Ux 3 x, such that only finitely many sequence members
are contained in Ux. Clearly {Ux | x ∈ X} is an open cover of X. Now,
compactness implies the existence of a finite subcover {Ux1 , . . . , Ux`

}. Note,
that only for finitely many n ∈ N we have an ∈ Uxi . Hence, ther exists an
Ni such that an /∈ Uxi for n > Ni. Then an /∈

⋃`
i=1 Uxi = X for n > N =

max{N1, . . . , N`}, but this a contradiction, since (an) was a sequence in X,
i.e. an ∈ X for every n ∈ N.

Compact Hausdorff spaces

5.8 Proposition. A compact subset of a Hausdorff space is closed.

Proof. Suppose that K is a compact subset of a Hausdorff space X. To
prove that K is closed we prove that X \K is open, and we prove this by
proving that it is a union of open subsets. Let x ∈ X \ K. Then, by the
Hausdorff condition, for each a ∈ K there are open subsets Ua, Va of X such
that a ∈ Ua, x ∈ Va and Ua ∩ Va = ∅.
Then {Ua | a ∈ A } is an open cover for K. Hence, since K is compact,
there is a finite subcover {Uai | 1 6 i 6 n} for K. So K ⊂

⋃n
i=1 Uai .

Put Vx =
⋂n

i=1 Vai . Then Vx is a finite intersection of open sets and so is
open and, since x ∈ Vai for all i, x ∈ Vx. Furthermore, for 1 6 i 6 n,
Vx ∩ Uai ⊂ Vai ∩ Uai = ∅ and so Vx ∩ Uai = ∅. Hence Vx ∩

⋃n
i=1 Uai = ∅ and

so Xx ∩K = ∅ or, equivalently, Vx ⊂ X \K.
Thus X \K =

⋃
x∈X\K Vx is a union of open sets and so is open. Hence K

is closed.

5.9 Proposition. Suppose that K is a compact subset of a topological
space X and A is a closed subset of X such that A ⊂ K. Then A is a
compact subset of X.

Proof. Using the notation in the proposition, let F be an open cover for
A. To prove that F has a subcover for A, observe that F ∪ {X \ A}
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is an open cover for K, since A is closed, and so has a finite subcover
{U1, U2, . . . , Un, X \A } where Ui ∈ F (we may as well assume X \A is one
of the open sets in the subcover since we could add it if it wasn’t included).
Then {U1, U2, . . . , Un } is a finite subcover of F for A as required to prove
that A is compact.

5.10 Theorem. Suppose that f : X → Y is a continuous bijection from a
compact space to a Hausdorff space. Then f is a homeomorphism.

Proof. Using the notation in the theorem, we prove that f−1 : Y → X is
continuous by using closed subsets (see Problems 2, Question 8), i.e. we
make use of the observation that f−1 : Y → X is continuous if and only if,
when A ⊂ X is a closed subset of X, (f−1)−1(A) = f(A) is a closed subset
of Y . This condition holds from results we have already proved as follows.

A is a closed subset of compact X

⇒ A is a compact subset of X (by Proposition 5.9

⇒ f(A) is a compact subset of Y (by Proposition 5.4)

⇒ f(A) is a closed subset of Hausdorff Y (by Proposition 5.8).

Hence f−1 is continuous and so f is a homeomorphism.

Products of compact spaces

5.11 Theorem. The product X1×X2 of two non-empty topological spaces
is compact if and only if the topological spaces X1 and X2 are both compact.

Proof. Suppose that X1 and X2 are non-empty topological spaces.

‘⇒’: Suppose that the product space X1 ×X2 is compact. Then, p1 : X1 ×
X2 → X1, the projection map given by p1(x1, x2) = x1, is a surjection since
X2 is non-empty. Hence X1 is compact since the continuous image of a
compact space is compact (Proposition 5.4). Similarly, X2 is compact.

To prove the converse the following lemma is useful.

5.12 Lemma. Let B be a basis for the topology of a topological space X.
Then K ⊂ X is compact if and only if every open cover for K by open sets
in the basis B has a finite subcover.

Proof. ‘⇒’: This is a special case of the definition.

‘⇐’: Suppose that K is a subset satisfying the condition regarding covers
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by basic open sets. Let F be an open cover for K. The we can write each
open set of F as a union of basic open sets. Let F1 be the set of all basic
open sets which are used in this process. Then

⋃
V ∈F1

V =
⋃

U∈F U and so
F1 is an open cover for K by basic open sets. Hence, by the given condition,
F1 has a finite subcover F ′1 for K. For each basic open set V in F ′1 we can
choose an open set U in F which contains it as a subset so that V ⊂ U .
This gives a finite subset F ′ of F such that

⋃
U∈F ′ U ⊃

⋃
V ∈F ′

1
V ⊃ K and

so F ′ is a finite subcover for K as required to prove that K is compact.

Proof of Theorem 5.11 (continued): ‘⇐’: Suppose that X1 and X2 are com-
pact. Let F be an open cover for X1 × X2 by basic open sets (i.e. sets of
the form U × V , where U is open in X1 and V is open in X2). Then, for
x ∈ X2, F is an open cover for X1 × {x} ∼= X1 (Remark 3.12(b)) which is
compact. Hence F has a finite subcover

Fx = {Ux
1 × V x

1 , U
x
2 × V x

2 , . . . , U
x
nx
× V x

nx
}

for X1 × {x}, where each Ux
i × V x

i is in F and x ∈ V x
i for each i.

Put Vx = V x
1 ∩V x

2 ∩ · · · ∩V x
nx

which is open (finite intersection of open sets)
and non-empty since it contains x. Then Fx is an open cover for X1 × Vx.
Now {Vx | x ∈ X2 } is an open cover for X2. Hence, since X2 is compact, this
has a finite subcover {Vx1 , Vx2 , . . . , Vxm } for X2. Then Fx1 ∪Fx2 ∪· · ·∪Fxm

is a finite subcover of F for X1 ×X2.
Hence, by the lemma, X1 ×X2 is compact.

Compact subsets of Euclidean spaces

5.13 Definition. A subset A ⊂ Rn is bounded if there is a real number M
such that |a| 6M for all a ∈ A.

5.14 Theorem (Heine-Borel-Lebesgue Theorem). A subset of Rn

with the usual topology is compact if and only if it is closed and bounded.

The proof depends on various results as follows.

5.15 Lemma. A compact subset of Rn with the usual topology is bounded.

Proof. Suppose that X ⊂ Rn is compact (usual topology). Then {Bn(0) |
n ∈ N} is an open cover for Rn and so an open cover for X. Hence, since X
is compact, there is a finite subcover {Bn1(0), Bn2(0), . . . , Bnk

(0) } for X.

Let n = max{ni}. Then X ⊂
⋃k

i=1Bni(0) = Bn(0) and so is bounded.

5.16 Lemma. A compact subset of Rn is closed.
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Proof. This follows from Proposition 5.8 since Rn is Hausdorff (Proposi-
tion 4.5).

5.17 Theorem (Heine-Borel Theorem). For a 6 b, the subset [a, b] of
R with the usual topology is compact.

Proof. Suppose for contradiction that F is an open cover for [a, b] with no
finite subcover.
Write I0 = [a, b] and divide this interval into two subintervals [a, (a+ b)/2]
and [(a+ b)/2, b]. Then F is an open cover for each of these subintervals. If
F has a finite subcover for each of the subintervals then their union would
be a finite subcover for I0. So, there is no finite subcover for at least one
of the subintervals; let I1 = [a1, b1] be such a subinterval. Notice that
b1−a1 = (b−a)/2. Repeating this process we get a sequence of subintervals
In = [an, bn] with bn − an = (b− a)/2n such that

a 6 a1 6 · · · 6 an 6 an+1 6 · · · 6 bn+1 6 bn 6 · · · 6 b1 6 b

and such that F does not have a finite subcover for each In.
Then (an)n>1 is an increasing sequence bounded above by b and so, from the
theory of sequences in R, is convergent. Similarly (bn)n>1 is a decreasing
sequence bounded below by a and so is convergent. However, bn − an =
(b− a)/2n → 0 as n→∞ and so limn→∞ an = limn→∞ bn; let the common
limit be α.
Since α ∈ I0 it must lie in some open set U of the cover F . Since U is an
open set in the usual topology on R it is a neighbourhood of α and so there
is some ε > 0 such that Bε(α) = (α−ε, α+ε) ⊂ U (by Definition 2.4). Now,
choose n ∈ N such that bn − an = (b− a)/2n < ε. Then, since an 6 α 6 bn,
α − an < ε and bn − α < ε so that In = [an, bn] ⊂ (α − ε, α + ε) ⊂ U .
This shows that the singleton {U } ⊂ F is a finite subcover of F for In
contradicting the choice of In as an interval for which F does not have a
subcover.
This contradiction shows that every open cover for the interval I0 = [a, b]
does have a finite subcover and so [a, b] is compact.

5.18 Corollary. For ai 6 bi for 1 6 i 6 n, the subset [a1, b1] × [a2, b2] ×
· · · × [an, bn] ⊂ Rn with the usual topology is compact.

Proof. This follows from the theorem using Theorem 5.11 and induction.

5.19 Corollary. A closed bounded subset of Rn with the usual topology
is compact.
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Proof. Suppose that X ⊂ Rn is closed and bounded. Since X is bounded
there is a real number M such that |x| 6 M for all x ∈ X. Then |xi| 6 M
for 1 6 i 6 n and so X ⊂ [−M,M ]×· · ·× [−M,M ] = [−M,M ]n. [−M,M ]n

is compact by Corollary 5.18. Hence, X is compact by Proposition 5.9.
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