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5 Compactness

5.1 Definition. A collection F of open subsets of a topological space X
is called an open cover for a subset A C X if A C JyerU. If F and F' are
open covers for A and F' C F then F' is a subcover of F.

A subset K of a topological space X is compact if each open cover for K has
a finite subcover. In particular, if X itself is a compact subset then we say
that it is a compact topological space.

5.2 Example. (a) A finite subset A = {a1,aq,...,a, } of any topologi-
cal space X is compact.

Proof. Given an open cover F for A we can choose, for each a;, an
open set U; € F such that a; € U;. Then {U;,Us,..., U, } is the
required finite subcover of F for A. Hence A is a compact subset. [

(b) A subset of a discrete topological space is compact if and only if it is
finite

Proof. ‘«<=’: This is a particular case of 5.2(a).

‘=": We prove the contrapositive. Suppose that A C X is an infinite
subset of a discrete topological space. Then F = {{a} |a € A} is an
open cover for A with no finite subcover. Hence A is not compact. [

(c) The subset (0,1) of R with the usual topology is not compact.

Pmof F = {(a 1) |a € (0,1) } is an open cover for (0, 1) since, given

€ (0,1), z € (x/2,1). This has no finite subcover for (0,1) since,
given { (a1,1), (az,1),...,(an,1) } C F, Ui, (ai, 1) = (a,1) where a =
min{a;} and a/2 ¢ (a, 1) O

(d) R with the usual topology is not compact.
Proof. F = {(—n,n) | n € N} is an open cover for R with no finite

subcover since |J;_;(—ni,n;) = (—n,n) where n = max{n;} and n +

1¢(—n,n). O



(e) Given a non-compact topological space (X, 7) consider the set X* =
X U {oo} and the topology

T =7U{X \CU{ox} | C C X compact}.

Then (X*,7%) is a compact topological space (called the one-point
compactification) [Excercise].

5.3 Proposition. Given a subset X; of a topological space X. The
subspace X7 is compact if and only if the subset X; is a compact subset of
the topological space X.

Proof. Exercise. O

5.4 Proposition. Suppose that f: X — Y is a continuous function of
topological spaces and K is a compact subset of X. Then f(K) is a compact
subset of Y.

Proof. Suppose that F is an open cover for f(K). Let f~%(F) = {f~%(V) |
V € F}. Then f~1(F) is an over cover for K since, given a € K, f(a) €
f(K) so that f(a) € V for some V € F. Hence a € f~1(V) for some V € F.
Now, since K is compact, f~(F) has a finite subcover for K,
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. Thus, given b € f(K), b = f(a) for some a € K. Then a € f~%(V;) for
some i, 1 < i < n, so that b = f(a) € V;. Hence {V1,V5,...,V,, } is a finite
subcover of F for f(K).

Hence f(K) is compact. O

5.5 Proposition. Compactness is a topological property, i.e. if X and Y
are homeomorphic spaces then X is compact if and only if Y is compact.

Proof. Suppose that X =Y.

Suppose that X is compact. Then a homeomorphism is a continuous bi-
jection f: X — Y and so, in particular, a continuous surjection. Hence
Y = f(X) is compact by Proposition 5.4.

Similarly, if Y is compact then X is compact. O



Compactness and accumulation points

5.6 Definition. Given a sequence (a,) in a topological space X. Then
a € X is called an accumulation point if every open neighbourhood U > a
contains infinitely many members of the sequence, i.e. a, € U for infinietly
many n € N.

5.7 Theorem. Every sequence in a compact topological space X has an
accumulation point.

Proof. Assume there is no accumulation point. Then for every z € X there is
open neighbourhood U, 3 z, such that only finitely many sequence members
are contained in U,. Clearly {U, | « € X} is an open cover of X. Now,
compactness implies the existence of a finite subcover {Uy,,...,Us,}. Note,
that only for finitely many n € N we have a,, € U,,. Hence, ther exists an
N; such that a,, ¢ Uy, for n > N;. Then a, ¢ Ule Uy, =X forn > N =
max{ Ny, ..., Ny}, but this a contradiction, since (a,,) was a sequence in X,
i.e. ap € X for every n € N. O

Compact Hausdorff spaces
5.8 Proposition. A compact subset of a Hausdorff space is closed.

Proof. Suppose that K is a compact subset of a Hausdorff space X. To
prove that K is closed we prove that X \ K is open, and we prove this by
proving that it is a union of open subsets. Let 2 € X \ K. Then, by the
Hausdorff condition, for each a € K there are open subsets U,, V, of X such
that a € U,, x € V, and U, NV, = 0.

Then {U, | a € A} is an open cover for K. Hence, since K is compact,
there is a finite subcover {Uy, | 1 < i < n} for K. So K C |J!", Uy,.

Put V, = ﬂ?zl Va;- Then V, is a finite intersection of open sets and so is
open and, since x € V,,; for all 4, x € V,. Furthermore, for 1 < i < n,
Ve U, C Vg, NU,, =0 and so V, NU,, = 0. Hence V, NU;_, Us, = 0 and
so X, N K =0 or, equivalently, V,, ¢ X \ K.

Thus X \ K = UweX\K V. is a union of open sets and so is open. Hence K
is closed. ]

5.9 Proposition. Suppose that K is a compact subset of a topological
space X and A is a closed subset of X such that A € K. Then A is a
compact subset of X.

Proof. Using the notation in the proposition, let F be an open cover for
A. To prove that F has a subcover for A, observe that F U {X \ A}



is an open cover for K, since A is closed, and so has a finite subcover
{U1,U,...,U,, X \ A} where U; € F (we may as well assume X \ A is one
of the open sets in the subcover since we could add it if it wasn’t included).
Then {U;,Us,...,U,} is a finite subcover of F for A as required to prove
that A is compact. O

5.10 Theorem. Suppose that f: X — Y is a continuous bijection from a
compact space to a Hausdorff space. Then f is a homeomorphism.

Proof. Using the notation in the theorem, we prove that f~': Y — X is
continuous by using closed subsets (see Problems 2, Question 8), i.e. we
make use of the observation that f~': Y — X is continuous if and only if,
when A C X is a closed subset of X, (f~!)71(A) = f(A) is a closed subset
of Y. This condition holds from results we have already proved as follows.

A is a closed subset of compact X
= A is a compact subset of X (by Proposition
= f(A) is a compact subset of Y (by Proposition
= f(A) is a closed subset of Hausdorff Y (by Proposition [5.8)).

Hence f~! is continuous and so f is a homeomorphism. ]

Products of compact spaces

5.11 Theorem. The product X; x X5 of two non-empty topological spaces
is compact if and only if the topological spaces X7 and X5 are both compact.
Proof. Suppose that X1 and Xy are non-empty topological spaces.

‘=": Suppose that the product space X7 x Xy is compact. Then, p;: X7 X
X2 — X7, the projection map given by p;(x1,z2) = x1, is a surjection since
X is non-empty. Hence X; is compact since the continuous image of a
compact space is compact (Proposition . Similarly, Xs is compact. [

To prove the converse the following lemma is useful.

5.12 Lemma. Let B be a basis for the topology of a topological space X.
Then K C X is compact if and only if every open cover for K by open sets
in the basis B has a finite subcover.

Proof. ‘=": This is a special case of the definition.

‘«<": Suppose that K is a subset satisfying the condition regarding covers



by basic open sets. Let F be an open cover for K. The we can write each
open set of F as a union of basic open sets. Let F; be the set of all basic
open sets which are used in this process. Then Jy <z V = Uyer U and so
JF1 is an open cover for K by basic open sets. Hence, by the given condition,
J1 has a finite subcover F| for K. For each basic open set V in F| we can
choose an open set U in F which contains it as a subset so that V C U.
This gives a finite subset F” of F such that Jyc» U D Uye 7V DK and

so F' is a finite subcover for K as required to prove that K is compact. [

Proof of Theorem (continued): ‘<=’: Suppose that X; and X5 are com-
pact. Let F be an open cover for X; x X5 by basic open sets (i.e. sets of
the form U x V, where U is open in X; and V is open in X5). Then, for
x € Xy, F is an open cover for X; x {z} = X; (Remark 3.12(b)) which is
compact. Hence F has a finite subcover

Fo={U x V", Uy x V5, ..., Uy x Vi }

for X; x {z}, where each U} x V/* is in F and = € V;* for each 1.

Put V, = VN VE¥EN---NV? which is open (finite intersection of open sets)
and non-empty since it contains x. Then F, is an open cover for X; x V.

Now {V, | z € X2 } is an open cover for X5. Hence, since X5 is compact, this
has a finite subcover { V., Vi, ..., Vg, } for Xo. Then F,, UF,, U---UF,,
is a finite subcover of F for X; x Xs.

Hence, by the lemma, X; x X5 is compact. ]

Compact subsets of Euclidean spaces

5.13 Definition. A subset A C R" is bounded if there is a real number M
such that |a| < M for all a € A.

5.14 Theorem (Heine-Borel-Lebesgue Theorem). A subset of R”
with the usual topology is compact if and only if it is closed and bounded.

The proof depends on various results as follows.
5.15 Lemma. A compact subset of R with the usual topology is bounded.

Proof. Suppose that X C R" is compact (usual topology). Then {B,(0) |
n € N} is an open cover for R” and so an open cover for X. Hence, since X
is compact, there is a finite subcover { By, (0), B,,(0), ..., By, (0) } for X.
Let n = max{n;}. Then X C Ule B,,(0) = B,(0) and so is bounded. [

5.16 Lemma. A compact subset of R" is closed.



Proof. This follows from Proposition since R" is Hausdorff (Proposi-
tion 4.5). O

5.17 Theorem (Heine-Borel Theorem). For a < b, the subset [a, b] of
R with the usual topology is compact.

Proof. Suppose for contradiction that F is an open cover for [a, b] with no
finite subcover.

Write Iy = [a, b] and divide this interval into two subintervals [a, (a + b)/2]
and [(a+b)/2,b]. Then F is an open cover for each of these subintervals. If
F has a finite subcover for each of the subintervals then their union would
be a finite subcover for Iy. So, there is no finite subcover for at least one
of the subintervals; let I; = [a1,b1] be such a subinterval. Notice that
by — a1 = (b—a)/2. Repeating this process we get a sequence of subintervals
I, = [an, by] with b, — a,, = (b — a)/2™ such that

agal<"‘<an<an+1<"'<bn+1gbng"'gblgb

and such that F does not have a finite subcover for each I,,.

Then (a,)n>1 is an increasing sequence bounded above by b and so, from the
theory of sequences in R, is convergent. Similarly (b,),>1 is a decreasing
sequence bounded below by a and so is convergent. However, b, — a, =
(b—a)/2™ — 0 as n — oo and so lim;, o0 @y, = limy, o by; let the common
limit be a.

Since a € Iy it must lie in some open set U of the cover F. Since U is an
open set in the usual topology on R it is a neighbourhood of « and so there
is some € > 0 such that B.(a) = (o —¢,a+¢) C U (by Definition 2.4). Now,
choose n € N such that b, —a, = (b —a)/2" < e. Then, since a,, < a < by,
a—ap, < ¢ and b, — a < € so that I, = [ap,b,] C (0« —e,a+¢) C U.
This shows that the singleton {U } C F is a finite subcover of F for I,
contradicting the choice of I,, as an interval for which F does not have a
subcover.

This contradiction shows that every open cover for the interval Iy = [a, b]
does have a finite subcover and so [a, b] is compact. O

5.18 Corollary. For a; < b; for 1 < i < n, the subset [ag, b1] X [ag, ba] X
- X [an, by] C R™ with the usual topology is compact.

Proof. This follows from the theorem using Theorem and induction. [J

5.19 Corollary. A closed bounded subset of R™ with the usual topology
is compact.



Proof. Suppose that X C R™ is closed and bounded. Since X is bounded
there is a real number M such that |x| < M for all x € X. Then |z;| < M
for1<i<nandsoX C[-M,M]x---x[-M,M]=[-M,M]". [-M, M]|"
is compact by Corollary Hence, X is compact by Proposition O
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