MATH31052 Topology

6 The Fundamental Group

6.1 Definition. Suppose that X is a topological space and zg, 1 € X.
Write I = [0, 1] with the usual topology. Two paths g and o1: I — X from
xg to xp are said to be homotopic, written oy ~ o1, when there exists a
continuous map H: I? — X such that

H(s,0) = oo(s),
H(s,1) = o1(s),
H(O,t) = 2o,
H(l,t) = X1

for s, t € I. We say that H is a homotopy between o¢ and o1 and indicate
this by writing H: g ~ 071.

6.2 Remark. In the above situation, if we define oy: I — X, for t € I,
by o4(s) = H(s,t), then oy is a path from z to z; in X and {o, |t € I}
provides a ‘continuous family’ of such maps betweem o¢ and o;.

6.3 Example. (a) Given xg, x; € D?, all paths in D? from xq to x; are
homotopic.

Proof. Define H: I? — R? by
H(s,t) = (1 —t)oo(s) + toi(s).

This is a continuous map since o and o7 are continuous and H(I%) C
D? since, for s, t € I,

[H (s, t)] = [(1=t)oo(s)+to1(s)] < (1=t)|oo(s)|+tlor(s)| < (1-t)+t = 1.

Hence, H: I? — D? and H: 0y ~ 0. O

(b) The same argument works for paths in any convex subset of R"™.

(c) In S C C with the usual topology, the paths oo(s) = exp(ims) and
01(s) = exp(—ins) are both from 1 to —1 but are not homotopic.

The proof of this will be given in Section 7.



6.4 Proposition. Homotopy of paths between two points ¢ and z; in a
topological space X is an equivalence relation.

Proof. We check the conditions for an equivalence relation (Definition 0.15).

The reflexive property. For any path o: I — X from zg to x; then a homo-
topy H: o ~ o is given by H(s,t) = o(s) (the constant homotopy).

The symmetric property. Given a homotopy H: o9 ~ o1 between two paths

in X from z¢ to z; then a homotopy H: o1 ~ o0g is given by H(s,t) =
H(s,1—t) (the reverse homotopy).
The transitive property. Given homotopies H: o9 ~ o1 and K: g1 ~ 09

where the o; are paths in X from xy to x; then a homotopy L: o9 ~ o9 is
given by

L(s,t) = H(s,2t) forselTand 0 <t<1/2,
U K(s,2t—1) forseland 1/2 <t < 1.

This is well defined since, fort = 1/2, H(s,1) = o1(s) = K(s,0). In addition,
L is continuous by the Gluing Lemma since I x [0,1/2] and I x [1/2,1] are
closed subsets of 12, O

6.5 Definition. We write [0] for the homotopy class of a path ¢ in a
topological space X. Thus, given two paths o¢ and o; from zg to 21 in a
topological space X, o9 ~ 01 < [09] = [01].

The algebra of homotopy classes of paths

6.6 Proposition. Given two homotopic paths o9 ~ o1 from z¢y to z; and
two homotopic paths 7, ~ 7 from 21 to x2 in a topological space X, then

go* 7o~ 01 *Tq.

Proof. Suppose that H: o9 ~ 01 and K: 19 ~ 7. Then we may define a
homotopy L: o¢ * 19 ~ o1 * 71 by

L(s,t) = H(2s,t) for0<s<1/2andtel,
PUTUK@2s—1,t) for1/2<s<landtel

This is well defined since, for s = 1/2, H(1,t) = 1 = K(0,t). In addition,
L is continuous by the Gluing Lemma since [0,1/2] x I and [1/2,1] x I are
closed subsets of I2. O]



6.7 Definition. Given a homotopy class [o] of paths from xg to 21 and [7]
a homotopy class of paths from z; to 2 in a topological space X then we
define their product [o][7], a homotopy class of paths from zg to xa, by

[o][T] = [o * T].
This is well-defined by Proposition 6.6.

6.8 Proposition. Given a path o from zg to z; in a topological space X,
then
Ego ¥ O ~ 0 ~ 0% &y,
or, equivalently,
[Exollo] = [o] = [o][ea,]-

Proof. A homotopy H: €,, x 0 ~ o is given by

0 for0<s<(1—-1)/2,
H(s,t):{ ( /

a(%) for (1—-t)/2<s< 1.

This is well-defined since, for s = (1 —t)/2, g = 0(0). It is continuous by
the Gluing Lemma since {(s,t) € I? | 0 < s < (1 —t)/2} and {(s,t) € I? |
(1 —1)/2 < s < 1} are closed subsets of I2.

There is a similar homotopy o ~ o % €,, (Exercise). O

6.9 Proposition. Given a path o from zg to z; in a topological space X,
then
Ox0~egy and Tx0 ~ey

or, equivalently,
[o][o] = [ew,] and  [o]lo] = [ea,].
Proof. A homotopy H: 0 %7 ~ &4, is given by

_f o(2(1—1)s for 0 < s <1/2,
Hs,t) = { 022(1 —t)(% —8) for1/2<s<1.

This is well-defined since, for s = 1/2, both formulae give o(1 — ¢). It is
continuous by the Gluing Lemma since [0,1/2] x I and [1/2, 1] x I are closed
in I?.

In a similar way we may write down a homotopy @ * o ~ ¢, |Exercise].
Alternatively, we may apply the first part of the result to the path & since
o is the reverse of the path 7. O



6.10 Proposition. Given two homotopic paths og ~ o1 from zg to z1 in
a topological space X, then 7y ~ 7.

Proof. Exercise. O

6.11 Definition. Given a homotopy class [o] of paths from zg to 7,
we define its inwverse [0]~!, a homotopy class of paths from z; to g, by
[0]~! = [7]. This is well-defined by Proposition 6.10.

6.12 Remark. With this notation we may write the result of Proposi-
tion 6.9 as
[0][0]™" = leay]  and [0] 7' [0] = [ea,].

6.13 Proposition. Given paths o from zg to x1, 7 from z; to x2 and p
from x9 to x3 in a topological space X then

(oxT)*pr~ox(T*p)
or, equivalently,
([e]lmDlp] = lo]([7][p]) so that we may write [o][T][p] without ambiguity.

Proof. A homotopy H: (o % T) % p ~ o x* (T % p) is given by

o(4s/(1+1)) for 0 <s<(1+1t)/4,
H(s,t) = T(4(s — (1+1)/4)) for (1+¢)/4<s<(241)/4,
p(%) for (2+1¢)/4<s< L

This is well-defined since, when s = (1 +t)/4, (1) = 1 = 7(0) and when
s=(2+4+1t)/4, 7(1) = x2 = p(0). It is continuous by the Gluing Lemma since
{(s,t) € I? |0 < s < (1+1)/4}, {(s,t) € I?| (1 +1)/4 < s < (2+1)/4} and
{(s,t)612|(2+t)/4<s<1} are closed in I2. O

The algebra of homotopy classes of loops

6.14 Definition. Let X be a topological space and zg € X. The a loop
or closed path in X based at xg is a path o: I — X from xzg to xg, i.e. such
that o(0) = o(1) = xo.

6.15 Theorem. The set of homotopy classes of loops in a topological space
X based at a point zp € X forms a group under the product [o][7] = [0 * 7].
The identity is given by e = [,,] and the inverse [0]~! = [7].



Proof. This follows from the results of Proposition 6.13 (associative product),
Proposition 6.8 (e is an identity element) and Proposition 6.9 ([o]~! is the
inverse of [o]). O

6.16 Definition. This group is called the fundamental group of X with
base point xo and is denoted 71 (X, zg). [Other names are the first homotopy
group or the Poincaré group. Sometimes the notation (X, zg) is used.|

6.17 Remark. The fundamental group is not necessarily an abelian group.
6.18 Example. If X is a convex subset of R™ with the usual topology and
zo € X, then m (X, x0) = {e} = I, the trivial group.

Proof. For all loops o in X based at xg, 0 ~ €;, by the argument of Exam-
ple 6.3(b). Hence [o] = e. O

Dependence on the base point

6.19 Theorem. Let X be a topological space and p be a path in X from
zg to x1. Then p induces an isomorphism

up: m (X, 20) = T (X, 21)

by

alp] for a € m (X, xo).

Proof. To see that u, is a homomorphism observe that, for o, 8 € 71 (X, z9),
up(@)up(B) “lalpllp] 7 Blol

“aleg,)Blp]  since [p][p] " = [ex,] (by Remark 6.12)

“laplp] since aley,] = a (by Proposition 6.8)

= uy(ap).

To see that w, is an isomorphism observe that uz: m (X, z1) — m(X, o)
provides an inverse since, for o € m (X, x9),

1

pl o

= |
= ol
[

=,

upp(@) = [p] " o] alp][p]

-
— [Pl alpllp " since (o] = 5] and [~} = [¢] (by Definition 2.11)
= |ezolaez,] since [p][p] = [ex,] (by Remark 6.12)
= «a since [gg]a = a = aleyz,] (by Proposition 6.8)

so that uzu, = Ly (X ,20) m1 (X, o) — m1 (X, z0).
And similarly, uyuz = I (x2,): T(X,21) = m (X, 21). O
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6.20 Remark. It is clear from the definition that homotopic paths induce
the same isomorphism. However, non-homotopic paths may induce different
isomorphisms and in that case there is no natural choice of isomorphism.
However, this result nevertheless means that, if X is path-connected, then
m1(X, o) = m1 (X, x1) for any two base points zg, 1 € X. In this case we
can refer to the fundamental group of the space without reference to a base
point and this is is sometimes denoted mq (X).

6.21 Definition. A topological space X is said to be simply-connected
when it is path-connected and 71(X) = I, the trivial group.
Functorial properties of the fundamental group

6.22 Theorem. A continuous map of topological spaces f: X — Y induces
a homomorphism

fe: m(X,@0) = m (Y, f(x0))

by f«([o]) = [f o o] for any choice of base point zp € X. This has the
following properties.

(a) The identity map Ix: X — X induces the identity map

(Ix)s = LIr (X ,20): T1(X,m0) — 71(X, %0).

(b) Given continuous maps f: X — Y and g: Y — Z then

(g0 f)s=guo fu: m(X,20) = 71 (Z, 9f (20))-

Proof. The function f, is well-defined since, if [09] = [o1] then o¢ ~ o1
and so there exists a homotopy H: o9 ~ 01. Then fo H: I? = Y gives a
homotopy foop~ fooy and so [f o og] = [f o 01].

To see that f, is a homomorphism suppose that [o], [7] € 71 (X, zo). Then

fellollr)) = fullox 7)) = [f o (0% 7)]

and

felloD) f[r]) = [f e ollf o] = [(f o o) * (f o 7)]



and by writing out the formulae we see that fo(o*7) = (foo)*(for): I = Y.
Hence, f.([o][r]) = fu(lo]) f([7]).
(a) Property (a) is immediate from the definition since Ix oo = o.

(b) Property (b) is immediate from the definition since (go f)oo =go(fo
o). O

6.23 Corollary. The fundamental group is a topological invariant: if
f: X — Y is a homeomorphism then f.: m (X, zo) — 71 (Y, f(zo)) is an
isomorphism.

Proof. This follows immediately from the functorial properties. Suppose
that f: X — Y is a homeomorphism with inverse f~! = g: Y — X. Then
Gt T (Y, f(mo)) — m1(X, xo) is the inverse of f, proving that f, is an iso-
morphism. To prove this observe that

g«ofs = (gof)« (by 6.22(b)) = (Ix)« (since g = f71) = I, (x40) (by 6.22(a))

and similarly fyog. =1 ) 1 m (Y, f(xo)) — m (Y, f(aco)). O

T (ny(xo)
6.24 Remark. Later we will proof that the fundamental group of the circle
St = {z € C| |z| = 1} is isomorphic to Z. The intuitive idea is to count
how often a given loop winds around the circle. Here, the sign accounts for
the orientation of the loop (counter clockkwise vs. clockwise).

6.25 Remark. The fundamental group is the first homotopy group since
the definition can be generalized to a definition of an nth homotopy group
Tn(X, o) for each natural number n. Whereas the first homotopy group is
defined using certain continuous maps I — X the nth homotopy group is
defined using certain continuous maps I™ — X.

Exercises

1. (a) Given a path o: I — X from x to z; in a topological space X, prove
that
O % Egyy ~ 0.

[Proposition 6.8, second part|
(b) Given two homotopic paths o¢ ~ o1 from xg to z1 in a topological space
X, prove that @y ~ @1. |Proposition 6.10]



2. Suppose that X is a convex subset of R™ with the usual topology [see
Problems 1, Question 7.] Prove that, all paths from zy to 1 € X are
homotopic. Deduce that 71 (X) = I, the trivial group.

3. Suppose that X is a path-connected space and zg, x1 € X. Prove that
all paths from xg to x; are homotopic if and only if X is simply-connected.

4. Suppose that X is a path-connected topological space and xg, x1 €
X. Prove that all paths p from z¢ to z; induce the same isomorphism
up: (X, 20) = (X, 21) if and only if the fundamental group m(X) is
abelian.

5. Recall from the proof of Proposition 1.17 that a continuous function
f: X — Y of topological spaces induces a function fi: mo(X) — mo(Y)
by f«([z]) = [f(x)]. Which of the following assertions are true in general?
Give a proof or counterexample for each.

(a) If f is surjective then f, is surjective.
(b) If f is injective then f, is injective.

(c) If f is bijective then f, is bijective.
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