
MATH31052 Topology

6 The Fundamental Group

6.1 De�nition. Suppose that X is a topological space and x0, x1 ∈ X.
Write I = [0, 1] with the usual topology. Two paths σ0 and σ1 : I → X from
x0 to x1 are said to be homotopic, written σ0 ∼ σ1, when there exists a
continuous map H : I2 → X such that

H(s, 0) = σ0(s),

H(s, 1) = σ1(s),

H(0, t) = x0,

H(1, t) = x1

for s, t ∈ I. We say that H is a homotopy between σ0 and σ1 and indicate
this by writing H : σ0 ∼ σ1.

6.2 Remark. In the above situation, if we de�ne σt : I → X, for t ∈ I,
by σt(s) = H(s, t), then σt is a path from x0 to x1 in X and {σt | t ∈ I }
provides a `continuous family' of such maps betweem σ0 and σ1.

6.3 Example. (a) Given x0, x1 ∈ D2, all paths in D2 from x0 to x1 are
homotopic.

Proof. De�ne H : I2 → R2 by

H(s, t) = (1− t)σ0(s) + tσ1(s).

This is a continuous map since σ0 and σ1 are continuous and H(I2) ⊂
D2 since, for s, t ∈ I,

|H(s, t)| = |(1−t)σ0(s)+tσ1(s)| 6 (1−t)|σ0(s)|+t|σ1(s)| 6 (1−t)+t = 1.

Hence, H : I2 → D2 and H : σ0 ∼ σ1.

(b) The same argument works for paths in any convex subset of Rn.

(c) In S1 ⊂ C with the usual topology, the paths σ0(s) = exp(iπs) and
σ1(s) = exp(−iπs) are both from 1 to −1 but are not homotopic.

The proof of this will be given in Section 7.
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6.4 Proposition. Homotopy of paths between two points x0 and x1 in a
topological space X is an equivalence relation.

Proof. We check the conditions for an equivalence relation (De�nition 0.15).

The re�exive property. For any path σ : I → X from x0 to x1 then a homo-
topy H : σ ∼ σ is given by H(s, t) = σ(s) (the constant homotopy).

The symmetric property. Given a homotopy H : σ0 ∼ σ1 between two paths
in X from x0 to x1 then a homotopy H : σ1 ∼ σ0 is given by H(s, t) =
H(s, 1− t) (the reverse homotopy).

The transitive property. Given homotopies H : σ0 ∼ σ1 and K : σ1 ∼ σ2
where the σi are paths in X from x0 to x1 then a homotopy L : σ0 ∼ σ2 is
given by

L(s, t) =

{
H(s, 2t) for s ∈ I and 0 6 t 6 1/2,
K(s, 2t− 1) for s ∈ I and 1/2 6 t 6 1.

This is well de�ned since, for t = 1/2,H(s, 1) = σ1(s) = K(s, 0). In addition,
L is continuous by the Gluing Lemma since I × [0, 1/2] and I × [1/2, 1] are
closed subsets of I2.

6.5 De�nition. We write [σ] for the homotopy class of a path σ in a
topological space X. Thus, given two paths σ0 and σ1 from x0 to x1 in a
topological space X, σ0 ∼ σ1 ⇔ [σ0] = [σ1].

The algebra of homotopy classes of paths

6.6 Proposition. Given two homotopic paths σ0 ∼ σ1 from x0 to x1 and
two homotopic paths τo ∼ τ1 from x1 to x2 in a topological space X, then

σ0 ∗ τ0 ∼ σ1 ∗ τ1.

Proof. Suppose that H : σ0 ∼ σ1 and K : τ0 ∼ τ1. Then we may de�ne a
homotopy L : σ0 ∗ τ0 ∼ σ1 ∗ τ1 by

L(s, t) =

{
H(2s, t) for 0 6 s 6 1/2 and t ∈ I,
K(2s− 1, t) for 1/2 6 s 6 1 and t ∈ I.

This is well de�ned since, for s = 1/2, H(1, t) = x1 = K(0, t). In addition,
L is continuous by the Gluing Lemma since [0, 1/2]× I and [1/2, 1]× I are
closed subsets of I2.
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6.7 De�nition. Given a homotopy class [σ] of paths from x0 to x1 and [τ ]
a homotopy class of paths from x1 to x2 in a topological space X then we
de�ne their product [σ][τ ], a homotopy class of paths from x0 to x2, by

[σ][τ ] = [σ ∗ τ ].

This is well-de�ned by Proposition 6.6.

6.8 Proposition. Given a path σ from x0 to x1 in a topological space X,
then

εx0 ∗ σ ∼ σ ∼ σ ∗ εx1
or, equivalently,

[εx0 ][σ] = [σ] = [σ][εx1 ].

Proof. A homotopy H : εx0 ∗ σ ∼ σ is given by

H(s, t) =

{
x0 for 0 6 s 6 (1− t)/2,
σ
(
s−(1−t)/2
1−(1−t)/2

)
for (1− t)/2 6 s 6 1.

This is well-de�ned since, for s = (1 − t)/2, x0 = σ(0). It is continuous by
the Gluing Lemma since {(s, t) ∈ I2 | 0 6 s 6 (1 − t)/2} and {(s, t) ∈ I2 |
(1− t)/2 6 s 6 1} are closed subsets of I2.

There is a similar homotopy σ ∼ σ ∗ εx1 (Exercise).

6.9 Proposition. Given a path σ from x0 to x1 in a topological space X,
then

σ ∗ σ ∼ εx0 and σ ∗ σ ∼ εx1
or, equivalently,

[σ][σ] = [εx0 ] and [σ][σ] = [εx1 ].

Proof. A homotopy H : σ ∗ σ ∼ εx0 is given by

H(s, t) =

{
σ
(
2(1− t)s

)
for 0 6 s 6 1/2,

σ
(
2(1− t)(1− s)

)
for 1/2 6 s 6 1.

This is well-de�ned since, for s = 1/2, both formulae give σ(1 − t). It is
continuous by the Gluing Lemma since [0, 1/2]× I and [1/2, 1]× I are closed
in I2.

In a similar way we may write down a homotopy σ ∗ σ ∼ εx1 [Exercise].
Alternatively, we may apply the �rst part of the result to the path σ since
σ is the reverse of the path σ.
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6.10 Proposition. Given two homotopic paths σ0 ∼ σ1 from x0 to x1 in
a topological space X, then σ0 ∼ σ1.

Proof. Exercise.

6.11 De�nition. Given a homotopy class [σ] of paths from x0 to x1,
we de�ne its inverse [σ]−1, a homotopy class of paths from x1 to x0, by
[σ]−1 = [σ]. This is well-de�ned by Proposition 6.10.

6.12 Remark. With this notation we may write the result of Proposi-
tion 6.9 as

[σ][σ]−1 = [εx0 ] and [σ]−1[σ] = [εx1 ].

6.13 Proposition. Given paths σ from x0 to x1, τ from x1 to x2 and ρ
from x2 to x3 in a topological space X then

(σ ∗ τ) ∗ ρ ∼ σ ∗ (τ ∗ ρ)

or, equivalently,

([σ][τ ])[ρ] = [σ]([τ ][ρ]) so that we may write [σ][τ ][ρ] without ambiguity.

Proof. A homotopy H : (σ ∗ τ) ∗ ρ ∼ σ ∗ (τ ∗ ρ) is given by

H(s, t) =


σ
(
4s/(1 + t)

)
for 0 6 s 6 (1 + t)/4,

τ
(
4(s− (1 + t)/4)

)
for (1 + t)/4 6 s 6 (2 + t)/4,

ρ
(
s−(2+t)/4
1−(2+t)/4

)
for (2 + t)/4 6 s 6 1.

This is well-de�ned since, when s = (1 + t)/4, σ(1) = x1 = τ(0) and when
s = (2+ t)/4, τ(1) = x2 = ρ(0). It is continuous by the Gluing Lemma since
{(s, t) ∈ I2 | 0 6 s 6 (1 + t)/4}, {(s, t) ∈ I2 | (1 + t)/4 6 s 6 (2 + t)/4} and
{(s, t) ∈ I2 | (2 + t)/4 6 s 6 1} are closed in I2.

The algebra of homotopy classes of loops

6.14 De�nition. Let X be a topological space and x0 ∈ X. The a loop

or closed path in X based at x0 is a path σ : I → X from x0 to x0, i.e. such
that σ(0) = σ(1) = x0.

6.15 Theorem. The set of homotopy classes of loops in a topological space
X based at a point x0 ∈ X forms a group under the product [σ][τ ] = [σ ∗ τ ].
The identity is given by e = [εx0 ] and the inverse [σ]−1 = [σ].
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Proof. This follows from the results of Proposition 6.13 (associative product),
Proposition 6.8 (e is an identity element) and Proposition 6.9 ([σ]−1 is the
inverse of [σ]).

6.16 De�nition. This group is called the fundamental group of X with

base point x0 and is denoted π1(X,x0). [Other names are the �rst homotopy

group or the Poincaré group. Sometimes the notation π(X,x0) is used.]

6.17 Remark. The fundamental group is not necessarily an abelian group.

6.18 Example. If X is a convex subset of Rn with the usual topology and
x0 ∈ X, then π1(X,x0) ∼= {e} = I, the trivial group.

Proof. For all loops σ in X based at x0, σ ∼ εx0 by the argument of Exam-
ple 6.3(b). Hence [σ] = e.

Dependence on the base point

6.19 Theorem. Let X be a topological space and ρ be a path in X from
x0 to x1. Then ρ induces an isomorphism

uρ : π1(X,x0)→ π1(X,x1)

by
uρ(α) = [ρ]−1α[ρ] for α ∈ π1(X,x0).

Proof. To see that uρ is a homomorphism observe that, for α, β ∈ π1(X,x0),

uρ(α)uρ(β) = [ρ]−1α[ρ][ρ]−1β[ρ]

= [ρ]−1α[εx0 ]β[ρ] since [ρ][ρ]−1 = [εx0 ] (by Remark 6.12)

= [ρ]−1αβ[ρ] since α[εx0 ] = α (by Proposition 6.8)

= uρ(αβ).

To see that uρ is an isomorphism observe that uρ : π1(X,x1) → π1(X,x0)
provides an inverse since, for α ∈ π1(X,x0),

uρuρ(α) = [ρ]−1[ρ]−1α[ρ][ρ]

= [ρ][ρ]−1α[ρ][ρ]−1 since [ρ]−1 = [ρ] and [ρ]−1 = [ρ] (by De�nition 2.11)

= [εx0 ]α[εx0 ] since [ρ][ρ] = [εx0 ] (by Remark 6.12)

= α since [εx0 ]α = α = α[εx0 ] (by Proposition 6.8)

so that uρuρ = Iπ1(X,x0) : π1(X,x0)→ π1(X,x0).
And similarly, uρuρ = Iπ1(X,x1) : π1(X,x1)→ π1(X,x1).
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6.20 Remark. It is clear from the de�nition that homotopic paths induce
the same isomorphism. However, non-homotopic paths may induce di�erent
isomorphisms and in that case there is no natural choice of isomorphism.
However, this result nevertheless means that, if X is path-connected, then
π1(X,x0) ∼= π1(X,x1) for any two base points x0, x1 ∈ X. In this case we
can refer to the fundamental group of the space without reference to a base
point and this is is sometimes denoted π1(X).

6.21 De�nition. A topological space X is said to be simply-connected

when it is path-connected and π1(X) ∼= I, the trivial group.

Functorial properties of the fundamental group

6.22 Theorem. A continuous map of topological spaces f : X → Y induces
a homomorphism

f∗ : π1(X,x0)→ π1
(
Y, f(x0)

)
by f∗([σ]) = [f ◦ σ] for any choice of base point x0 ∈ X. This has the
following properties.

(a) The identity map IX : X → X induces the identity map

(IX)∗ = Iπ1(X,x0) : π1(X,x0)→ π1(X,x0).

(b) Given continuous maps f : X → Y and g : Y → Z then

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0)→ π1
(
Z, gf(x0)

)
.

Proof. The function f∗ is well-de�ned since, if [σ0] = [σ1] then σ0 ∼ σ1
and so there exists a homotopy H : σ0 ∼ σ1. Then f ◦ H : I2 → Y gives a
homotopy f ◦ σ0 ∼ f ◦ σ1 and so [f ◦ σ0] = [f ◦ σ1].
To see that f∗ is a homomorphism suppose that [σ], [τ ] ∈ π1(X,x0). Then

f∗([σ][τ ]) = f∗([σ ∗ τ ]) = [f ◦ (σ ∗ τ)]

and
f∗([σ])f∗([τ ]) = [f ◦ σ][f ◦ τ ] = [(f ◦ σ) ∗ (f ◦ τ)]
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and by writing out the formulae we see that f◦(σ∗τ) = (f◦σ)∗(f◦τ) : I → Y .
Hence, f∗([σ][τ ]) = f∗([σ])f∗([τ ]).

(a) Property (a) is immediate from the de�nition since IX ◦ σ = σ.

(b) Property (b) is immediate from the de�nition since (g ◦ f) ◦ σ = g ◦ (f ◦
σ).

6.23 Corollary. The fundamental group is a topological invariant: if
f : X → Y is a homeomorphism then f∗ : π1(X,x0) → π1

(
Y, f(x0)

)
is an

isomorphism.

Proof. This follows immediately from the functorial properties. Suppose
that f : X → Y is a homeomorphism with inverse f−1 = g : Y → X. Then
g∗ : π1

(
Y, f(x0)

)
→ π1(X,x0) is the inverse of f∗ proving that f∗ is an iso-

morphism. To prove this observe that

g∗◦f∗ = (g◦f)∗ (by 6.22(b)) = (IX)∗ (since g = f−1) = Iπ1(X,x0) (by 6.22(a))

and similarly f∗ ◦ g∗ = I
π1
(
Y,f(x0)

) : π1(Y, f(x0))→ π1
(
Y, f(x0)

)
.

6.24 Remark. Later we will proof that the fundamental group of the circle
S1 = {z ∈ C | |z| = 1} is isomorphic to Z. The intuitive idea is to count
how often a given loop winds around the circle. Here, the sign accounts for
the orientation of the loop (counter clockkwise vs. clockwise).

6.25 Remark. The fundamental group is the �rst homotopy group since
the de�nition can be generalized to a de�nition of an nth homotopy group
πn(X,x0) for each natural number n. Whereas the �rst homotopy group is
de�ned using certain continuous maps I → X the nth homotopy group is
de�ned using certain continuous maps In → X.

Exercises

1. (a) Given a path σ : I → X from x0 to x1 in a topological space X, prove
that

σ ∗ εx1 ∼ σ.

[Proposition 6.8, second part]
(b) Given two homotopic paths σ0 ∼ σ1 from x0 to x1 in a topological space
X, prove that σ0 ∼ σ1. [Proposition 6.10]
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2. Suppose that X is a convex subset of Rn with the usual topology [see
Problems 1, Question 7.] Prove that, all paths from x0 to x1 ∈ X are
homotopic. Deduce that π1(X) ∼= I, the trivial group.

3. Suppose that X is a path-connected space and x0, x1 ∈ X. Prove that
all paths from x0 to x1 are homotopic if and only if X is simply-connected.

4. Suppose that X is a path-connected topological space and x0, x1 ∈
X. Prove that all paths ρ from x0 to x1 induce the same isomorphism
uρ : π1(X,x0) → π1(X,x1) if and only if the fundamental group π1(X) is
abelian.

5. Recall from the proof of Proposition 1.17 that a continuous function
f : X → Y of topological spaces induces a function f∗ : π0(X) → π0(Y )
by f∗([x]) = [f(x)]. Which of the following assertions are true in general?
Give a proof or counterexample for each.

(a) If f is surjective then f∗ is surjective.

(b) If f is injective then f∗ is injective.

(c) If f is bijective then f∗ is bijective.
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