MATH31052 Topology

6 The Fundamental Group

6.1 Definition. Suppose that X is a topological space and $x_0, x_1 \in X$. Write I = [0, 1] with the usual topology. Two paths σ_0 and $\sigma_1 \colon I \to X$ from x_0 to x_1 are said to be *homotopic*, written $\sigma_0 \sim \sigma_1$, when there exists a continuous map $H \colon I^2 \to X$ such that

$$\begin{array}{rcl} H(s,0) &=& \sigma_0(s), \\ H(s,1) &=& \sigma_1(s), \\ H(0,t) &=& x_0, \\ H(1,t) &=& x_1 \end{array}$$

for $s, t \in I$. We say that H is a homotopy between σ_0 and σ_1 and indicate this by writing $H: \sigma_0 \sim \sigma_1$.

6.2 Remark. In the above situation, if we define $\sigma_t \colon I \to X$, for $t \in I$, by $\sigma_t(s) = H(s,t)$, then σ_t is a path from x_0 to x_1 in X and $\{\sigma_t \mid t \in I\}$ provides a 'continuous family' of such maps betweem σ_0 and σ_1 .

6.3 Example. (a) Given $\mathbf{x}_0, \mathbf{x}_1 \in D^2$, all paths in D^2 from \mathbf{x}_0 to \mathbf{x}_1 are homotopic.

Proof. Define $H: I^2 \to \mathbb{R}^2$ by

$$H(s,t) = (1-t)\sigma_0(s) + t\sigma_1(s).$$

This is a continuous map since σ_0 and σ_1 are continuous and $H(I^2) \subset D^2$ since, for $s, t \in I$,

$$|H(s,t)| = |(1-t)\sigma_0(s) + t\sigma_1(s)| \leq (1-t)|\sigma_0(s)| + t|\sigma_1(s)| \leq (1-t) + t = 1$$

Hence, $H: I^2 \to D^2$ and $H: \sigma_0 \sim \sigma_1$.

- (b) The same argument works for paths in any convex subset of \mathbb{R}^n .
- (c) In $S^1 \subset \mathbb{C}$ with the usual topology, the paths $\sigma_0(s) = \exp(i\pi s)$ and $\sigma_1(s) = \exp(-i\pi s)$ are both from 1 to -1 but are not homotopic. The proof of this will be given in Section 7.

The proof of this will be given in Section 7.

6.4 Proposition. Homotopy of paths between two points x_0 and x_1 in a topological space X is an equivalence relation.

Proof. We check the conditions for an equivalence relation (Definition 0.15).

The reflexive property. For any path $\sigma: I \to X$ from x_0 to x_1 then a homotopy $H: \sigma \sim \sigma$ is given by $H(s,t) = \sigma(s)$ (the constant homotopy).

The symmetric property. Given a homotopy $H: \sigma_0 \sim \sigma_1$ between two paths in X from x_0 to x_1 then a homotopy $\overline{H}: \sigma_1 \sim \sigma_0$ is given by $\overline{H}(s,t) = H(s, 1-t)$ (the reverse homotopy).

The transitive property. Given homotopies $H: \sigma_0 \sim \sigma_1$ and $K: \sigma_1 \sim \sigma_2$ where the σ_i are paths in X from x_0 to x_1 then a homotopy $L: \sigma_0 \sim \sigma_2$ is given by

$$L(s,t) = \begin{cases} H(s,2t) & \text{for } s \in I \text{ and } 0 \leq t \leq 1/2, \\ K(s,2t-1) & \text{for } s \in I \text{ and } 1/2 \leq t \leq 1. \end{cases}$$

This is well defined since, for t = 1/2, $H(s, 1) = \sigma_1(s) = K(s, 0)$. In addition, L is continuous by the Gluing Lemma since $I \times [0, 1/2]$ and $I \times [1/2, 1]$ are closed subsets of I^2 .

6.5 Definition. We write $[\sigma]$ for the homotopy class of a path σ in a topological space X. Thus, given two paths σ_0 and σ_1 from x_0 to x_1 in a topological space X, $\sigma_0 \sim \sigma_1 \Leftrightarrow [\sigma_0] = [\sigma_1]$.

The algebra of homotopy classes of paths

6.6 Proposition. Given two homotopic paths $\sigma_0 \sim \sigma_1$ from x_0 to x_1 and two homotopic paths $\tau_o \sim \tau_1$ from x_1 to x_2 in a topological space X, then

$$\sigma_0 * \tau_0 \sim \sigma_1 * \tau_1.$$

Proof. Suppose that $H: \sigma_0 \sim \sigma_1$ and $K: \tau_0 \sim \tau_1$. Then we may define a homotopy $L: \sigma_0 * \tau_0 \sim \sigma_1 * \tau_1$ by

$$L(s,t) = \begin{cases} H(2s,t) & \text{for } 0 \leqslant s \leqslant 1/2 \text{ and } t \in I, \\ K(2s-1,t) & \text{for } 1/2 \leqslant s \leqslant 1 \text{ and } t \in I. \end{cases}$$

This is well defined since, for s = 1/2, $H(1,t) = x_1 = K(0,t)$. In addition, L is continuous by the Gluing Lemma since $[0, 1/2] \times I$ and $[1/2, 1] \times I$ are closed subsets of I^2 .

6.7 Definition. Given a homotopy class $[\sigma]$ of paths from x_0 to x_1 and $[\tau]$ a homotopy class of paths from x_1 to x_2 in a topological space X then we define their *product* $[\sigma][\tau]$, a homotopy class of paths from x_0 to x_2 , by

$$[\sigma][\tau] = [\sigma * \tau].$$

This is well-defined by Proposition 6.6.

6.8 Proposition. Given a path σ from x_0 to x_1 in a topological space X, then

$$\varepsilon_{x_0} * \sigma \sim \sigma \sim \sigma * \varepsilon_{x_1}$$

or, equivalently,

$$[\varepsilon_{x_0}][\sigma] = [\sigma] = [\sigma][\varepsilon_{x_1}].$$

Proof. A homotopy $H: \varepsilon_{x_0} * \sigma \sim \sigma$ is given by

$$H(s,t) = \begin{cases} x_0 & \text{for } 0 \leq s \leq (1-t)/2, \\ \sigma\left(\frac{s-(1-t)/2}{1-(1-t)/2}\right) & \text{for } (1-t)/2 \leq s \leq 1. \end{cases}$$

This is well-defined since, for s = (1 - t)/2, $x_0 = \sigma(0)$. It is continuous by the Gluing Lemma since $\{(s,t) \in I^2 \mid 0 \leq s \leq (1 - t)/2\}$ and $\{(s,t) \in I^2 \mid (1 - t)/2 \leq s \leq 1\}$ are closed subsets of I^2 .

There is a similar homotopy $\sigma \sim \sigma * \varepsilon_{x_1}$ (Exercise).

6.9 Proposition. Given a path
$$\sigma$$
 from x_0 to x_1 in a topological space X, then

$$\sigma * \overline{\sigma} \sim \varepsilon_{x_0}$$
 and $\overline{\sigma} * \sigma \sim \varepsilon_{x_1}$

or, equivalently,

$$[\sigma][\overline{\sigma}] = [\varepsilon_{x_0}]$$
 and $[\overline{\sigma}][\sigma] = [\varepsilon_{x_1}].$

Proof. A homotopy $H: \sigma * \overline{\sigma} \sim \varepsilon_{x_0}$ is given by

$$H(s,t) = \begin{cases} \sigma(2(1-t)s) & \text{for } 0 \leq s \leq 1/2, \\ \sigma(2(1-t)(1-s)) & \text{for } 1/2 \leq s \leq 1. \end{cases}$$

This is well-defined since, for s = 1/2, both formulae give $\sigma(1 - t)$. It is continuous by the Gluing Lemma since $[0, 1/2] \times I$ and $[1/2, 1] \times I$ are closed in I^2 .

In a similar way we may write down a homotopy $\overline{\sigma} * \sigma \sim \varepsilon_{x_1}$ [Exercise]. Alternatively, we may apply the first part of the result to the path $\overline{\sigma}$ since σ is the reverse of the path $\overline{\sigma}$. **6.10 Proposition.** Given two homotopic paths $\sigma_0 \sim \sigma_1$ from x_0 to x_1 in a topological space X, then $\overline{\sigma}_0 \sim \overline{\sigma}_1$.

Proof. Exercise.

6.11 Definition. Given a homotopy class $[\sigma]$ of paths from x_0 to x_1 , we define its *inverse* $[\sigma]^{-1}$, a homotopy class of paths from x_1 to x_0 , by $[\sigma]^{-1} = [\overline{\sigma}]$. This is well-defined by Proposition 6.10.

6.12 Remark. With this notation we may write the result of Proposition 6.9 as

$$[\sigma][\sigma]^{-1} = [\varepsilon_{x_0}]$$
 and $[\sigma]^{-1}[\sigma] = [\varepsilon_{x_1}].$

6.13 Proposition. Given paths σ from x_0 to x_1 , τ from x_1 to x_2 and ρ from x_2 to x_3 in a topological space X then

$$(\sigma * \tau) * \rho \sim \sigma * (\tau * \rho)$$

or, equivalently,

 $([\sigma][\tau])[\rho] = [\sigma]([\tau][\rho])$ so that we may write $[\sigma][\tau][\rho]$ without ambiguity.

Proof. A homotopy $H: (\sigma * \tau) * \rho \sim \sigma * (\tau * \rho)$ is given by

$$H(s,t) = \begin{cases} \sigma(4s/(1+t)) & \text{for } 0 \leq s \leq (1+t)/4, \\ \tau(4(s-(1+t)/4)) & \text{for } (1+t)/4 \leq s \leq (2+t)/4, \\ \rho(\frac{s-(2+t)/4}{1-(2+t)/4}) & \text{for } (2+t)/4 \leq s \leq 1. \end{cases}$$

This is well-defined since, when s = (1 + t)/4, $\sigma(1) = x_1 = \tau(0)$ and when s = (2+t)/4, $\tau(1) = x_2 = \rho(0)$. It is continuous by the Gluing Lemma since $\{(s,t) \in I^2 \mid 0 \le s \le (1+t)/4\}$, $\{(s,t) \in I^2 \mid (1+t)/4 \le s \le (2+t)/4\}$ and $\{(s,t) \in I^2 \mid (2+t)/4 \le s \le 1\}$ are closed in I^2 .

The algebra of homotopy classes of loops

6.14 Definition. Let X be a topological space and $x_0 \in X$. The a *loop* or *closed path* in X *based at* x_0 is a path $\sigma: I \to X$ from x_0 to x_0 , i.e. such that $\sigma(0) = \sigma(1) = x_0$.

6.15 Theorem. The set of homotopy classes of loops in a topological space X based at a point $x_0 \in X$ forms a group under the product $[\sigma][\tau] = [\sigma * \tau]$. The identity is given by $e = [\varepsilon_{x_0}]$ and the inverse $[\sigma]^{-1} = [\overline{\sigma}]$.

Proof. This follows from the results of Proposition 6.13 (associative product), Proposition 6.8 (*e* is an identity element) and Proposition 6.9 ($[\sigma]^{-1}$ is the inverse of $[\sigma]$).

6.16 Definition. This group is called the fundamental group of X with base point x_0 and is denoted $\pi_1(X, x_0)$. [Other names are the first homotopy group or the Poincaré group. Sometimes the notation $\pi(X, x_0)$ is used.]

6.17 Remark. The fundamental group is not necessarily an abelian group.

6.18 Example. If X is a convex subset of \mathbb{R}^n with the usual topology and $x_0 \in X$, then $\pi_1(X, x_0) \cong \{e\} = I$, the trivial group.

Proof. For all loops σ in X based at x_0 , $\sigma \sim \varepsilon_{x_0}$ by the argument of Example 6.3(b). Hence $[\sigma] = e$.

Dependence on the base point

6.19 Theorem. Let X be a topological space and ρ be a path in X from x_0 to x_1 . Then ρ induces an isomorphism

$$u_{\rho} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$$

by

$$u_{\rho}(\alpha) = [\rho]^{-1} \alpha[\rho] \quad \text{for } \alpha \in \pi_1(X, x_0).$$

Proof. To see that u_{ρ} is a homomorphism observe that, for $\alpha, \beta \in \pi_1(X, x_0)$,

$$u_{\rho}(\alpha)u_{\rho}(\beta) = [\rho]^{-1}\alpha[\rho][\rho]^{-1}\beta[\rho]$$

= $[\rho]^{-1}\alpha[\varepsilon_{x_{0}}]\beta[\rho]$ since $[\rho][\rho]^{-1} = [\varepsilon_{x_{0}}]$ (by Remark 6.12)
= $[\rho]^{-1}\alpha\beta[\rho]$ since $\alpha[\varepsilon_{x_{0}}] = \alpha$ (by Proposition 6.8)
= $u_{\rho}(\alpha\beta)$.

To see that u_{ρ} is an isomorphism observe that $u_{\overline{\rho}} \colon \pi_1(X, x_1) \to \pi_1(X, x_0)$ provides an inverse since, for $\alpha \in \pi_1(X, x_0)$,

$$u_{\overline{\rho}}u_{\rho}(\alpha) = [\overline{\rho}]^{-1}[\rho]^{-1}\alpha[\rho][\overline{\rho}]$$

= $[\rho][\rho]^{-1}\alpha[\rho][\rho]^{-1}$ since $[\rho]^{-1} = [\overline{\rho}]$ and $[\overline{\rho}]^{-1} = [\rho]$ (by Definition 2.11)
= $[\varepsilon_{x_0}]\alpha[\varepsilon_{x_0}]$ since $[\rho][\overline{\rho}] = [\varepsilon_{x_0}]$ (by Remark 6.12)
= α since $[\varepsilon_{x_0}]\alpha = \alpha = \alpha[\varepsilon_{x_0}]$ (by Proposition 6.8)

so that $u_{\overline{\rho}}u_{\rho} = I_{\pi_1(X,x_0)} \colon \pi_1(X,x_0) \to \pi_1(X,x_0).$ And similarly, $u_{\rho}u_{\overline{\rho}} = I_{\pi_1(X,x_1)} \colon \pi_1(X,x_1) \to \pi_1(X,x_1).$ **6.20 Remark.** It is clear from the definition that homotopic paths induce the same isomorphism. However, non-homotopic paths may induce different isomorphisms and in that case there is no natural choice of isomorphism. However, this result nevertheless means that, if X is path-connected, then $\pi_1(X, x_0) \cong \pi_1(X, x_1)$ for any two base points $x_0, x_1 \in X$. In this case we can refer to *the* fundamental group of the space without reference to a base point and this is is sometimes denoted $\pi_1(X)$.

6.21 Definition. A topological space X is said to be *simply-connected* when it is path-connected and $\pi_1(X) \cong I$, the trivial group.

Functorial properties of the fundamental group

6.22 Theorem. A continuous map of topological spaces $f: X \to Y$ induces a homomorphism

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

by $f_*([\sigma]) = [f \circ \sigma]$ for any choice of base point $x_0 \in X$. This has the following properties.

(a) The identity map $I_X : X \to X$ induces the identity map

$$(I_X)_* = I_{\pi_1(X,x_0)} \colon \pi_1(X,x_0) \to \pi_1(X,x_0).$$

(b) Given continuous maps $f: X \to Y$ and $g: Y \to Z$ then

$$(g \circ f)_* = g_* \circ f_* \colon \pi_1(X, x_0) \to \pi_1(Z, gf(x_0)).$$

Proof. The function f_* is well-defined since, if $[\sigma_0] = [\sigma_1]$ then $\sigma_0 \sim \sigma_1$ and so there exists a homotopy $H: \sigma_0 \sim \sigma_1$. Then $f \circ H: I^2 \to Y$ gives a homotopy $f \circ \sigma_0 \sim f \circ \sigma_1$ and so $[f \circ \sigma_0] = [f \circ \sigma_1]$.

To see that f_* is a homomorphism suppose that $[\sigma], [\tau] \in \pi_1(X, x_0)$. Then

$$f_*([\sigma][\tau]) = f_*([\sigma * \tau]) = [f \circ (\sigma * \tau)]$$

and

$$f_*([\sigma])f_*([\tau]) = [f \circ \sigma][f \circ \tau] = [(f \circ \sigma) * (f \circ \tau)]$$

and by writing out the formulae we see that $f \circ (\sigma * \tau) = (f \circ \sigma) * (f \circ \tau) \colon I \to Y$. Hence, $f_*([\sigma][\tau]) = f_*([\sigma])f_*([\tau])$.

(a) Property (a) is immediate from the definition since $I_X \circ \sigma = \sigma$.

(b) Property (b) is immediate from the definition since $(g \circ f) \circ \sigma = g \circ (f \circ \sigma)$.

6.23 Corollary. The fundamental group is a topological invariant: if $f: X \to Y$ is a homeomorphism then $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.

Proof. This follows immediately from the functorial properties. Suppose that $f: X \to Y$ is a homeomorphism with inverse $f^{-1} = g: Y \to X$. Then $g_*: \pi_1(Y, f(x_0)) \to \pi_1(X, x_0)$ is the inverse of f_* proving that f_* is an isomorphism. To prove this observe that

$$g_* \circ f_* = (g \circ f)_*$$
 (by 6.22(b)) = $(I_X)_*$ (since $g = f^{-1}$) = $I_{\pi_1(X,x_0)}$ (by 6.22(a))

and similarly
$$f_* \circ g_* = I_{\pi_1(Y, f(x_0))} : \pi_1(Y, f(x_0)) \to \pi_1(Y, f(x_0)).$$

6.24 Remark. Later we will proof that the fundamental group of the circle $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ is isomorphic to \mathbb{Z} . The intuitive idea is to count how often a given loop winds around the circle. Here, the sign accounts for the orientation of the loop (counter clockwise vs. clockwise).

6.25 Remark. The fundamental group is the *first* homotopy group since the definition can be generalized to a definition of an *n*th homotopy group $\pi_n(X, x_0)$ for each natural number *n*. Whereas the first homotopy group is defined using certain continuous maps $I \to X$ the *n*th homotopy group is defined using certain continuous maps $I^n \to X$.

Exercises

1. (a) Given a path $\sigma: I \to X$ from x_0 to x_1 in a topological space X, prove that

 $\sigma * \varepsilon_{x_1} \sim \sigma.$

[Proposition 6.8, second part]

(b) Given two homotopic paths $\sigma_0 \sim \sigma_1$ from x_0 to x_1 in a topological space X, prove that $\overline{\sigma}_0 \sim \overline{\sigma}_1$. [Proposition 6.10]

2. Suppose that X is a convex subset of \mathbb{R}^n with the usual topology [see Problems 1, Question 7.] Prove that, all paths from x_0 to $x_1 \in X$ are homotopic. Deduce that $\pi_1(X) \cong I$, the trivial group.

3. Suppose that X is a path-connected space and $x_0, x_1 \in X$. Prove that all paths from x_0 to x_1 are homotopic if and only if X is simply-connected.

4. Suppose that X is a path-connected topological space and $x_0, x_1 \in X$. Prove that all paths ρ from x_0 to x_1 induce the same isomorphism $u_\rho: \pi_1(X, x_0) \to \pi_1(X, x_1)$ if and only if the fundamental group $\pi_1(X)$ is abelian.

5. Recall from the proof of Proposition 1.17 that a continuous function $f: X \to Y$ of topological spaces induces a function $f_*: \pi_0(X) \to \pi_0(Y)$ by $f_*([x]) = [f(x)]$. Which of the following assertions are true in general? Give a proof or counterexample for each.

- (a) If f is surjective then f_* is surjective.
- (b) If f is injective then f_* is injective.
- (c) If f is bijective then f_* is bijective.