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7 The Fundamental Group of the Circle

We will take the circle S1 to be the unit circle centre the origin the complex
plane:

S1 = { z ∈ C | |z| = 1 }.

7.1 Theorem. π1(S
1, 1) ∼= Z, the additive group of the integers.

The proof of this result will take up the whole of this section. In order to
define the isomorphism we need two key results which we will prove towards
the end of the section.

7.2 Theorem (The Path-Lifting Theorem). Let p : R → S1 be the
exponential map given by p(x) = exp(2πix) ∈ S1 ⊂ C. Suppose that
σ : I → S1 is a loop in S1 based at 1. Then there is a unique path σ̃ : I → R
such that

(a) p ◦ σ̃ = σ (we say that σ̃ is a lift of σ to R); and

(b) σ̃(0) = 0.

7.3 Definition. Given a loop σ in S1 based at 1 with lift σ̃ : I → R such
that σ̃(0) = 0. Since pσ̃(1) = σ(1) = 1 it follows that σ̃(1) ∈ p−1(1) = Z.
We define the degree of the loop σ to be σ̃(1), written deg(σ) = σ̃(1).

7.4 Theorem (The Monodromy Theorem). Suppose that σ0 and σ1
are two homotopic loops in S1 based at 1. Then deg(σ0) = deg(σ1).

7.5 Corollary. We may define a function φ : π1(S
1, 1) → Z by φ([σ]) =

deg(σ).

Proof. The Monodromy Theorem shows that φ is well-defined.

7.6 Proposition. The function φ : π1(S
1, 1)→ Z is a group isomorphism

(hence proving Theorem 7.1).

This will be proved by a sequence of lemmata.

7.7 Lemma. φ is a homomorphism.
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Proof. Suppose that σ and τ are two loops in S1 based at 1. Let σ̃, τ̃ : I → R
be lifts of σ, τ respectively such that σ̃(0) = τ̃(0) = 0. Then φ([σ]) =
deg(σ) = σ̃(1) ∈ Z and φ([τ ]) = deg(τ) = τ̃(1) ∈ Z.
[σ][τ ] = [σ ∗ τ ] and so φ([σ][τ ]) = deg(σ ∗ τ).
Define ρ : I → R by

ρ(s) =

{
σ̃(2s) for 0 6 s 6 1/2,
σ̃(1) + τ̃(2s− 1) for 1/2 6 s 6 1.

This is well-defined since, for s = 1/2, σ̃(1) = σ̃(1) + τ̃(0) since τ̃(0) = 0
and is continuous by the Gluing Lemma. The composition p ◦ ρ = σ ∗ τ and
ρ(0) = 0 and so ρ = σ̃ ∗ τ , the unique lift of σ∗τ guaranteed by Theorem 7.2.
Hence φ([σ][τ ]) = deg(σ ∗ τ) = ρ(1) = σ̃(1) + τ̃(1) = φ([σ]) + φ([τ ]) as
required.

7.8 Lemma. φ is an epimorphism.

Proof. Suppose that n ∈ Z. Let the loop σn : I → S1 be defined by σn(s) =
exp(2πins). Then its unique lift σ̃n : I → R with σ̃n(0) = 0 is given by
σ̃n(s) = ns. Hence deg(σn) = σ̃n(1) = n and so φ([σn]) = n. Hence φ is
a surjection and so, since it is a homomorphism, it is an epimorphism (see
Definition 0.27 in the background reading).

7.9 Lemma. φ is a monomorphism.

Proof. The homomorphism φ is a monomorphism (i.e. an injection, see Def-
inition 0.27) if the kernel ker(φ) = {α ∈ π1(S

1, 1) | φ(α) = 0 } = I (see
Proposition 0.32).
Suppose that φ([σ]) = 0. Then deg(σ) = 0 and so the unique lift of σ to R
with σ̃(0) = 0 has σ̃(1) = 0 and so is a loop in R based at 0. Then σ̃ ∼ ε0,
the constant loop at 0 by a homotopy H : I2 → R defined by H(s, t) =
(1 − t)σ̃(s). Then p ◦ H : σ ∼ ε1 and so [σ] = [ε1] = e ∈ π1(S1, 1). Hence
ker(φ) = {e} = I, the trivial subgroup and so φ is a monomorphism.

The Lebesgue number

The proofs of Theorems 7.2 and 7.4 make use of a result about coverings of
compact subsets of Euclidean spaces.

7.10 Definition. Given a non-empty subset A ⊂ Rn and a point x ∈ Rn
we define the distance of x from A by

d(x, A) = inf{ |x− a| | a ∈ A }.
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This exists since |x− a| > 0 for all a ∈ A and so the set { |x− a| | a ∈ A }
is bounded below.

7.11 Proposition. The function Rn → R given by x 7→ d(x, A) is a
continuous function (for Rn and R with the usual topologies).

Proof. Exercise. [Prove that |d(x, A) − d(x′, A)| 6 |x − x′| by using the
triangle inequality and then use the ε-δ definition of continuity.]

7.12 Theorem (The Lebesgue Number Lemma). Let F be an open
cover for a compact subspace X ⊂ Rn (usual topology). The there is a
positive real number δ > 0 (a Lebesgue number for the cover) so that for
each point x ∈ X, BX

δ (x) ⊂ U for some U ∈ F .

Proof. Let F be an open cover for the subspace X ⊂ Rn. Then, if X ∈ F we
can take δ to be any positive number. So suppose that X is not an element
of F . Since X is compact, F has a finite subcover for X, {U1, U2, . . . , Un}.
For each i, 1 6 i 6 n, put Ai = X \ Ui (non-empty by the assumption that
X 6∈ F) and define f : X → R by

f(x) =
1

n

n∑
i=1

d(x, Ai).

Then f is continuous by Proposition 7.11. Furthermore, f(x) > 0 for all
x ∈ X. To see this, observe that, given x ∈ X, x ∈ Ui for some i and so,
since Ui is an open subset of X, there exists ε > 0 so that BX

ε (x) ⊂ Ui which
implies that d(x, Ai) > ε which in turn implies that f(x) > ε/n > 0.
However, by the result of Problems 6, Question 8(c), f has a minimum value,
say δ, and, since f(x) > 0 for all x ∈ X, δ > 0 so that f(x) > δ for all
x ∈ X,
Now, for x ∈ X, δ 6 f(x) 6 d(x, Ak) where d(x, Ak) is the largest of the
numbers d(x, Ai) for 1 6 i 6 n. Then BX

δ (x) ⊂ Uk as required.

Proofs of the Path-Lifting and Monodromy Theorems

7.13 Lemma. (a) Let V ′ = { z ∈ S1 | z 6= −1 } and U ′n = (n− 1/2, n+
1/2) ⊂ R. Then p−1(V ′) =

⋃
n∈Z U

′
n and, for each n ∈ Z, the restric-

tion p′n = p|U ′n : U ′n → V ′ is a homeomorphism.

(b) Let V ′′ = { z ∈ S1 | z 6= 1 } and U ′′n = (n, n+1) ⊂ R. Then p−1(V ′′) =⋃
n∈Z U

′′
n and. for each n ∈ Z, the restriction p′′n = p|U ′′n : U ′′n → V ′ is

a homeomorphism.
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Proof. (a) The set theoretic statement is clear since p−1(−1) = {n + 1/2 |
n ∈ Z }. The inverse of p′n is given by z 7→ (loge z)/2πi+ n where

loge : C \ { z ∈ R | z 6 0 } 7→ {x+ iy ∈ C | −π < y < π}

is the principal logarithm defined on the cut plane. This function is contin-
uous from complex analysis.
(b) This is a similar argument. In this case, z 7→

(
loge(−z)

)
/2πi+ (n+ 1/2)

(principal logarithm again) is the inverse of p′′n.

7.14 Lemma. Given a loop σ : I → S1 based at 1, there exits a positive
integer n, such that, for each i, 0 6 i 6 n − 1, σ([(i/n, (i + 1)/n]) ⊂ V ′ or
σ([i/n, (i+ 1)/n]) ⊂ V ′′.

Proof. Given a loop σ : I → S1 in S1 based at 1, {σ−1(V ′), σ−1(V ′′) } is
an open cover of I and so, since I is compact, there is a Lebesgue number
δ > 0 for this open cover. Let n be a positive integer so that 1/n < δ. Then,
for 0 6 i 6 n − 1, [i/n, (i + 1)/n] ⊂ BI

δ (i/n) ⊂ σ−1(V ′) or σ−1(V ′′) by the
defining property of the Lebesgue number. Hence σ([i/n, (i + 1)/n]) ⊂ V ′

or V ′′ as required.

Proof of the Path-Lifting Theorem. Suppose that σ : I → S1 is a loop based
at 1. Let n be a positive integer such that for each i, 0 6 i 6 n − 1,
σ([i/n, (i+ 1)/n]) ⊂ V ′ or σ([i/n, (i+ 1)/n]) ⊂ V ′′ as given by Lemma 7.14.
We define σ̃ : I → R by an inductive process.
For 0 6 i < n suppose that a continuous function σ̃i : [0, i/n]→ R has been
defined so that pσ̃i(s) = σ(s) for 0 6 s 6 i/n and σ̃(0) = 0.
This is clearly possible for i = 0 since [0, 0] = {0}.
Suppose now that σ([i/n, (i + 1)/n]) ⊂ V (k) (k = 1 or 2, where V (1) = V ′

and V (2) = V ′′). Then, using the notation of Lemma 7.13, σ̃i(i/n) ∈ U (k)
m

for some m ∈ Z so that σ̃i(i/n) = (p
(k)
m )−1σ(i/n). Hence we can define

σ̃i+1 : [0, (i+ 1)/n]→ R by

σ̃i+1(s) =

{
σ̃i(s) for 0 6 s 6 i/n,(
p
(k)
m

)−1
σ(s) ∈ U (k)

m for i/n 6 s 6 (i+ 1)/n.

This is well-defined and is continuous by the Gluing Lemma and σ̃i+1 : [0, (i+
1)/n] → R is a continuous function such that pσ̃i+1(s) = σ(s) for 0 6 s 6
(i+ 1)/n and σ̃i+1(0) = 0.
After n steps,σ̃ = σ̃n : [0, 1]→ R is the required lift.
For uniqueness, suppose that σ̃′ : I → R is another lift of σ with σ̃′(0) = 0.
Then, for s ∈ I,pσ̃(s) = pσ̃′(s) and so σ̃(s)− σ̃′(s) ∈ Z. So we may define a
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continuous function f : I → Z by f(s) = σ̃(s)− σ̃′(s). This must be constant
by the Intermediate Value Theorem. But f(0) = 0 and so f(s) = 0 for all
s ∈ I, i.e. σ̃(s) = σ̃′(s) for all s ∈ I, i.e. σ̃ = σ̃′.

Proof of the Monodromy Theorem. Suppose that H : σ ∼ σ′ is a homotopy
between two loops in S1 based at 1. Then we may prove, by a similar
argument to that used to prove Theorem 7.2, that there is a lift H̃ : I2 → R
of H (i.e. p ◦ H̃ = H) with H(0, 0) = 0 (see below for the details).
Now. for t ∈ I, pH̃(0, t) = H(0, t) = 1 and so t 7→ H̃(0, t) is a continuous
function I → Z and so is constant so that H̃(0, 1) = H̃(0, 0) = 0.
Similarly, t 7→ H̃(1, t) is a continuous function I → Z and so is constant so
that H̃(1, 1) = H̃(1, 0).
But s 7→ H̃(s, 0) is a lift of σ0 with H̃(0, 0) = 0 and so deg(σ0) = H̃(1, 0).
Similarly, s 7→ H̃(s, 1) is a lift of σ1 with H̃(0, 1) = 0 and so deg(σ1) =
H̃(1, 1).
Hence, deg(σ0) = H̃(1, 0) = H̃(1, 1) = deg(σ1).
[Note that H̃ gives a homotopy σ̃0 ∼ σ̃1.]
To construct the required lift H̃ of a homotopy H, observe that, as in the
proof of Lemma 7.14, {H−1(V ′), H−1(V ′′) } is an open cover for I2, a com-
pact space, and so has a Lebesgue number δ > 0.
Let n be a positive integer so that 1/n < δ/

√
2. Then, for 0 6 i, j 6 n− 1,

[i/n, (i+ 1)/n]× [j/n, (j + 1)/n] ⊂ BI2

δ (i/n, j/n) ⊂ H−1(V ′) or H−1(V ′′)

by the defining property of the Lebesgue number. Hence H([i/n, (i+1)/n]×
[j/n, (j + 1)/n]) ⊂ V ′ or V ′′.
We can now construct a continuous lift H̃ : I1 → R such that p ◦ H̃ = H
and H̃(0, 0) = 0 by a double induction process which can be described
informally as follows (the formal details are similar to those in the proof of
Theorem 7.2).
First define H̃ over the small square [0, 1/n]× [0, 1/n] so that p◦H̃ = H and
H(0, 0) = 0. This can be done since H maps [0, 1/n]× [0, 1/n] into V ′. Now
(using the fact that H maps each small square into either V ′ or V ′′) extend H̃
successively over the squares [i/n, (i+1)/n]×[0, 1/n] for 1 6 i 6 n−1 so that
the definitions agree on the common edges of successive squares. This defines
H̃ over the rectangle [0, 1]× [0, 1/n]. Using the same method we extend H̃
successively over each rectangle [0, 1] × [j/n, (j + 1)/n] for 1 6 j 6 n − 1
so that the definitions agree on the common edges of successive rectangle.
This gives H̃ on the whole of [0, 1]× [0, 1] as required.
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8 Applications of the Fundamental Group

8.1 Definition. A subspace X1 of a topological space X is called a retract
of X if there is a continuous map r : X → X1 such that r ◦ i = IX1 : X1 →
X1, the identity map. This is often expressed by saying that there exists
a map r so that following diagram commutes (i.e. the functions obtained
by composing the functions corresponding to different routes around the
diagram from one vertex to another are the same).

X1
i //

idX1 !!

X

r~~
X1

The map r is called a retraction.

8.2 Example. (a) Given topological spaces X and Y and a point x0 ∈
X, the subspace {x0} × Y is a retract of the product space X × Y . A
retraction r : X × Y → {x0} × Y is given by r(x, y) = (x0, y) for all
(x, y) ∈ X × Y .

(b) The subspace {0, 1} is not a retract of I = [0, 1] with the usual topology
since I is path-connected and {0, 1} is not (using Theorem 1.9 since a
retraction is necessarily a surjection).

8.3 Theorem (The Brouwer Non-Retraction Theorem). The unit
circle S1 is not a retract of the unit disc D2 (with the usual topology).

Proof. Let i : S1 → D2 be the inclusion map and suppose for contradiction
that there is a retraction r : D2 → S1. Then r ◦ i = idS1 : S1 → S1. Hence,
by the functorial properties of the fundamental group (Theorem 6.22) we
obtain

r∗ ◦ i∗ = (r ◦ i)∗ = (idS1)∗ = idπ1(S1,1) : π1(S
1, 1)→ π1(S

1, 1).

But this is impossible since π1(S
1, 1) ∼= Z and π1(D

2, 1) ∼= {0}, the trivial
group (written additively to fit in with the other group). More precisely,
given non-zero n ∈ Z, r∗ ◦ i∗(n) = r∗(0) = 0 6= n. So this is a contradiction
and therefore the map r cannot exist.

8.4 Remark. The above argument using the functorial properties of the
fundamental group is often expressed by saying the the first of the following
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commutative diagrams induces the second.

S1 i //

idS1   

D2

r~~
S1

=⇒ π1(S
1, 1)

i∗ //

(idS1 )∗=id &&

π1(D
2, 1)

r∗xx
π1(S

1, 1)

8.5 Corollary (The Brouwer Fixed Point Theorem). Given a con-
tinuous map f : D2 → D2 it has a fixed point, i.e. a point x ∈ D2 such that
f(x) = x.

Proof. Suppose for contradiction that f is such a map with no fixed points,
i.e. f(x) 6= x for all x ∈ D2. Then we may define a retraction r : D2 → S1

by defining r(x) to be the point where the continuation of the line segement
from f(x) to x meets S1.
The map r : D2 → S1 is continuous. This is intuitively clear but can be
proved by writing down an explicit formula for r(x) in terms of x and f(x)
We obtain

r(x) =

(
A(x2 − y2) + (x1 − y1)

√
a2 −A2

a2
,
−A(x1 − y1) + (x2 − y2)

√
a2 −A2

a2

)
where x = (x1, x2), f(x) = (y1, y2), a

2 = |x− y|2, A = x1y2 − x2y1.
From the definition r(x) = x if x ∈ S1 and so r : D2 → S1 is a retraction
which cannot exist by Theorem 8.3 and so we have a contradiction. Hence
f must have a fixed point.

8.6 Theorem [The Fundamental Theorem of Algebra]. Any non-
constant polynomial equation in the complex numbers C has a root.

Proof. Suppose for contradiction that f(z) = zn + an−1z
n−1 + · · · + a0

where n > 0 is a polynomial with complex coefficients (ai ∈ C) such that
f(z) 6= 0 for all z ∈ C. Write f(z) = zn + g(z) and more generally define
ft(z) = zn + tg(z) for t ∈ [0, 1] so that f0(z) = zn and f1 = f .
Choose R > 0 such that |z|n > |g(z)| for all z such that |z| = R. (This
exists because |zn/g(z)| → ∞ as |z| → ∞.
Define a loop in S1 based at 1 by

σ(s) =
f(Re2πis)

|f(Re2πis|)
|f(R)|
f(R)

.

(Here the division by |f(Re2πis| is to ensure that S1 is the codomain and
the final factor is ensure that the loop is based at 1.)
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Define a homotopy H : I2 → S1 by

H(s, t) =
ft(Re

2πis)

|ft(Re2πis|)
|ft(R)|
ft(R)

.

Then H : σn ∼ σ where σn(s) = exp(2πnis) and so deg(σ) = deg(σn) = n >
0.
On the other hand let define K : I2 → S1 by

K(s, t) =
f(tRe2πis)

|f(tRe2πis|)
|f(tR)|
f(tR)

.

(Notice that this definition used our assumption that f(z) 6= 0 for all z in
ensuring that the denominators do not vanish.) Then K : σ0 ∼ σ where σ0
is the constant loop σ0(s) = 1 for all s ∈ S1. Hence deg(σ) = deg(σ0) = 0.
These two different values for the degree of the loop give the necessary
contradiction. Hence f must have a zero. �

The Hairy Ball Theorem

8.6 Definition. Suppose that X ⊂ Rn. Then a vector field on X is a
continuous map v : X → Rn.
If X = Sn−1 ⊂ Rn then v : Sn−1 → Rn is a tangent vector field if v(x) is
perpendicular to x for all x ∈ Sn−1.

8.7 Example. A non-vanishing tangent vector field on an odd-dimensional
sphere v : S2n−1 → R2n is given by v(x1, x2, . . . , x2n−1, x2n) = (−x2, x1, . . . ,−x2n, x2n−1).

8.8 Theorem (The Hairy Ball Theorem). Suppose that v : S2 → R3

is a tangent vector field on S2. Then v(x) = 0 for some x ∈ S2.

Proof. The proof is by contradiction. Suppose for contradiction that v : S2 →
R3 be a non-vanishing tangent vector field.
Then, by replacing v(x) by v(x)/|v(x)| if necessary we may suppose that
|v(x)| = 1 for all x ∈ S1.
Furthermore, by rotating about the x1-axis if necessary, we msy suppose
that v(1, 0, 0) = (0, 0, 1).
Let H+ = {x ∈ S2 | x3 > 0}, H− = {x ∈ S2 | x3 6 0}.
Let p : H+ → D2 (⊂ R2 ∼= R2 × {0} ⊂ R3) be stereographic projection
from the point (0, 0,−1), i.e. p(x1, x2, x3) = (x1, x2)/(1 + x3). This is a
homeomorphism fixing S1 × {0} ∼= S1. Using it we can find a vector field
on D2 as follows.
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For x ∈ H+, the α be the angle between x and (0, 0, 1). Define px : R3 → R3

be the orthogonal map obtained by rotating through the angle α about
the line (−x2, x1, 0) so that px(x) = (0, 0, 1). [This is well-defined apart
from when x = (0, 0, 1) and in this case α = 0 and so px = IR3 , the
identity map.] Since px(x) = (0, 0, 1), px maps the vectors perpendicular
to x to R2 × {0} ⊂ R3. So we can define a vector field on D2 ⊂ R2

by w1

(
p(x)

)
= px

(
v(x)

)
∈ R2 × {0} ∼= R2. Since v(1, 0, 0) = (0, 0, 1),

w1(1, 0) = (−1, 0). Thus

w1 : D2 → S1 such that w1(1) = −1 (1)

(identifying R2 with C as usual).
Similarly, using the stereographic projection H− → D2 (from (0, 0, 1)), we
obtain a vector field

w2 : D2 → S1 such that w2(1) = 1. (2)

The equator S1 × {0} of the sphere S2 lies in both H+ and H− and this
enables us to relate the restrictions of w1 and w2 to the boundary circle.
Write fi = wi|S1 for i = 1, 2. Then for z ∈ S1, f2(z) is obtained from f1(z)
by reflection in the line iz. Let ρz : S1 → S1 denote reflection in the line iz.
Then

f2(z) = ρz
(
f1(z)

)
for all z ∈ S1. (3)

We now observe that the three statements (1), (2) and (3) lead to a contra-
diction.
Using the functorial properties of the fundamental group, the first of the
following commutative diagrams implies the second.

S1 f1 //

i   

S1

D2

w1

>>
=⇒ π1(S

1, 1)
(f1)∗ //

i∗ &&

π1(S
1,−1)

π1(D
2, 1)

(w1)∗
88

Since π1(D
2, 1) is the trivial group, (f1)∗ is the trivial map. In particular,

if σ1 : I → S1 is given by σ1(s) = exp(2πis), then

f1 ◦ σ1 ∼ ε−1 : I → S1. (4)

Let H1 : f1 ◦ σ1 ∼ ε−1. Then, if we define H2 : I1 → S1 by H2(s, t) =
ρσ1(s)

(
H1(s, t)

)
we find (using equation (3)) that H2 : f2 ◦ σ1 ∼ σ2 where

σ2(s) = ρσ(s)
(
ε−1(s)

)
= exp(4πis). But deg(σ2) = 2 and so

deg(f2 ◦ σ1) = 2. (5)
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However, just as above for equation (4), we can prove that

f2 ◦ σ1 ∼ ε1 : I → S1. (6)

But this is incompatible with equation (5) since it implies that deg(f2◦σ1) =
deg(ε1) = 0. This gives the necessary contradiction showing that a non-
vanishing tangent vector field cannot exist.
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