MATH31052 Topology

Problems 4: Quotient Spaces

1. Prove Proposition 3.15.

2. Let $X = \{x \in \mathbb{R}^2 \mid 1 \leq |x| \leq 2\}$ be an annulus in \mathbb{R}^2 with the usual topology. Define a continuous bijection from the quotient space X/S^1 to unit disc D^2 in \mathbb{R}^2 with the usual topology.

[It follows from a general result in §5 that such a map is a homeomorphism.]

3. Suppose that ~ is the equivalence relation on I^2 generated by $(x, 0) \sim (x, 1)$ and $(0, y) \sim (1, y)$ for all $x, y \in I = [0, 1]$. Prove that there is a continuous bijection $I^2/\sim \to S^1 \times S^1$. [Example 3.20(c). It will follow from a general result in §5 that such a map is a homeomorphism.]

4. Define an equivalence relation on the product space $S^1 \times [-1, 1]$ by $(x, t) \sim (x', t')$ if and only if $(\mathbf{x}, t) = (\mathbf{x}', t')$ or t = t' = 1 or t = t' = -1. Define a continuous bijection from the quotient space $(S^1 \times [-1, 1])/\sim$ to S^2 with the usual topology.

[It follows from a general result in §5 that such a map is a homeomorphism.]

5. Define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{0\}$ by $x \sim \lambda x$ for all non-zero real numbers λ . Prove that the quotient space $(\mathbb{R}^{n+1} \setminus \{0\})/\sim$ is homeomorphic to P^n , real projective *n*-space (as defined in 3.21 in the notes).

[This is the classical definition of projective *n*-space: as the set of lines through the origin in \mathbb{R}^{n+1} .]

6. Let $f: S^2 \to \mathbb{R}^4$ be defined by

$$f(x_1, x_2, x_3) = (x_1^2 - x_2^2, x_1 x_2, x_1 x_3, x_2 x_3).$$

Prove that f induces a continuous bijection $F: P^2 \to F(P^2) \subset \mathbb{R}^4$ where $F(P^2)$ has the usual topology as a subset of \mathbb{R}^4 .

[It is a little tricky to show that $f(\mathbf{x}) = f(\mathbf{x}') \Rightarrow \mathbf{x} = \pm \mathbf{x}'$ so if this causes

problems I suggest that you don't spend too much time on it.

It follows from a general result in §5 that this map is a homeomorphism. Such a homeomorphism is called an *embedding* of the projective plane in \mathbb{R}^4 . It can be shown that there is no embedding of the projective plane in \mathbb{R}^3 .]

7. Let $D_r^n(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n \mid |\mathbf{x} - \mathbf{a}| \leq r \}$. Define an equivalence relation on the subset $X = D_1^2(2,0) \cup D_1^2(-2,0)$ of \mathbb{R}^2 with the usual topology by $(2,0) + \mathbf{x} \sim (-2,0) + \mathbf{x}$ for $|\mathbf{x}| = 1$. Prove that there is a homeomorphism from the quotient space X/\sim to S^2 with the usual topology.

[This shows that gluing two discs together by their boundary circles gives a sphere. You can get a continuous function $X \to S^2$ which induces the homeomorphism by mapping one disc to the upper hemisphere (using the map of $D^2 \to \{ \mathbf{x} \in S^2 \mid x_2 \ge 0 \}$ asked for in Problems 1, Question 4) and the other to the lower hemisphere. You can prove that the inverse map is continuous using the Gluing Lemma.]

8. Define an equivalence relation on D^2 by $\mathbf{x} \sim \mathbf{x}' \Leftrightarrow \mathbf{x} = \mathbf{x}'$ or $(\mathbf{x}, \mathbf{x}' \in S^1 \text{ and } \mathbf{x}' = -\mathbf{x}$. Prove that the there is a continuous bijection from D^2/\sim to P^2 .

[It follows from a general result in §5 that such a map is a homeomorphism. To construct the bijection you may find it useful to make use of the map $D^2 \rightarrow \{ \mathbf{x} \in S^2 \mid x_2 \ge 0 \}$ asked for in Problems 1, Question 4.]