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MATH31052 Topology

Solutions 1

1. We may define a continuous function f : R2 \ {0} → Z by increasing
the length of each vector by 1, i.e. f(x) = (|x|+ 1)x/|x|. The inverse map
g : Z → R \ {0} is given by decreasing the length of each vector by 1, i.e.
g(y) = (|y| − 1)y/|y|. It is easy to check that g = f−1 by evaluating g ◦ f
and f ◦ g (try this). Hence f : R \ {0} → Z is a continuous bijection with
continuous inverse and so a homeomorphism.

2. We may define a continuous function f : S1 → T by scaling, i.e. f(x) =
x/(|x1|+ |x2|) and a function f : T → S1 by scaling g(y) = y/|y|. It is easy
to check that g = f−1 by evaluating g ◦ f and f ◦ g. Hence f : S1 → T is a
continuous bijection with continuous inverse and so a homeomorphism.

3. (a) Notice that each point x ∈ [a1, b1] can be written x = a1 + (x− a1).
We construct a homeomorphism f : [a1, b1]→ [a2, b2] by translating by a2−

a1 and scaling by (b2 − a2)/(b1 − a1) so that f(x) = a2 +
b2 − a2
b1 − a1

(x − a1).
(Notice that since x ∈ [a1, b1], 0 6 x− a1 6 b1 − a1 and so 0 6 f(x)− a2 6
b2 − a2, i.e. f(x) ∈ [a2, b2].) This is clearly continuous and the inverse
function g : [a2, b2] → [a1, b1] is given by the same formula with a1 and
a2 interchanged and b1 and b2 interchanged. You can check by explicit
calculation that g is inverse to f .

(b) A homeomorphism (0, π/2)→ (0,∞) is given by t→ tan t and a homeo-
morphism (0, 1) → (0, π/2) is given by scaling x → πx/2 (a special case
of part (a)). Hence composing these functions gives a homeomorphism
f : (0, 1) → (0, π/2) → (0,∞) given by the formula f(x) = tan(πx/2). The
inverse of tan: (0, π/2) → (0,∞) is given by the principal value of tan−1

and so again composing this with a scaling map gives the inverse of f : the
function g : (0,∞)→ (0, π/2)→ (0, 1) given by g(y) = 2 tan−1(y)/π. Again
you should check by explicit calculation that g is the inverse of f .] A home-
omorphism g : (0,∞)→ R is given by g(x) = loge(x) with the inverse given
by exp.
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4. The construction of a homeomorphism f : Dn
r (a) → Dn

r′(a
′) uses the

same method as for Question 3(a). Each point x ∈ Dn
r (a) can be written

x = a + (x − a). We construct f by translating the centre of the ball
by a′ − a and by scaling the radial vector x − a by r′/r. This gives the
formula f(x) = a′ + (r′/r)(x − a) for f . This is clearly continuous and if
|x−a| < r then |f(x)−a′| < r′ so that, for x ∈ Dn

r (a), f(x) ∈ Dn
r′(a

′). The
inverse g : Dn

r′(a
′)→ Dn

r (a) is given by the same formula but with a and a′

interchanged and r and r′ interchanged. Again you should check that g is
the inverse of f .

5. We can construct a homeomorphism from the cylinder to the annulus
by mapping the circle at height x3 to the circle of radius 1 + x3. This leads
to the function given by f(x1, x2, x3) = (1 + x3)(x1, x2) which is clearly
continuous. (By definition of the cylinder, (x1, x2) ∈ S1, the unit circle
centre the origin. Multiplying by 1 + x3 gives a point on the circle of radius
1 + x3 centre the origin.)

To prove that f is a bijection (which is clear from the construction) we can
can down the inverse g given by g(y1, y2) = (y1/|y|, y2/|y|, |y| − 1). (Scaling
by 1/|y| gives a point on the unit circle. For the inverse you want the circle of
radius |y| in the annulus to go to the circle at height |y|−1 in the cylinder.)
You should check by explicit calculation that g is inverse to f .

6. A homeomorphism from the semicircle to the closed interval is given by
the projection f(x1, x2) = x1. The inverse is given by f−1(x) = (x,

√
1− x2)

(the formula for the second coordinate comes from the fact that the value
lies on the circle and has a non-negative second coordinate.
This can then be generalized to a homeomorphism f : {x ∈ Sn | xn+1 >
0 } → Dn given by
f(x1, x2, . . . , xn, xn+1) = (x1, x2, . . . , xn) with inverse f−1(y) = (y,

√
1− |y|2).

7. The proof is the same as the proof that Dn is path-connected (Propo-
sition 1.7). Given two points x, x′ ∈ A a path γ : [0, 1] → A between them
is given by γ(t) = (1− t)x+ tx′. This is continuous from basic analysis and
it lies in A because A is convex.
The converse is false since, for example, the circle S1 is path-connected but
is not convex.

8. Suppose that f : X → Y is a continuous surjection and X is path-
connected. To deduce that Y is path-connected we must show that for
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general points y, y′ ∈ Y there is a path in Y from y to y′. To do this
we first observe that given such points, since f is a surjection, there are
points x, x′ ∈ X such that f(x) = y and f(y) = y′. Now, since X is path-
connected, there exists a path in X from x to x′, say σ : [0, 1] ∈ X. But
now f ◦ σ : [0, 1] → Y is a path in Y (since the oomposition of continuous
functions is continuous) and (f ◦σ)(0) = f(x) = y and similarly f ◦σ(1) = y′

so that f ◦ σ : [0, 1] → Y is a path in Y from y to y′ as required. Hence Y
is path-connected.

9. (a) The function f : R → S1 given by f(θ) = (cos θ, sin θ) is a contin-
uous surjection and R is path-connected (a convex subset of R) and so, by
Theorem 1.9, S1 is path-connected.

(b) Spherical polar coordinates give a continuous surjection f : R2 → S2 by

f(θ, φ) = (cos θ cosφ, sin θ cosφ, sinφ).

The set R2 is path-connected since it is convex. Hence S2 is path-connected
by Theorem 1.9.

[This argument can be generalized for all spheres Sn for n > 1. We can define
a continuous surjection fn : Rn → Sn by induction on n. The standard
parametrization of the circle by (cos θ, sin θ) gives f1. For the inductive
step, if fk is defined then we can parametrize Sk+1 by fk+1(θ1, . . . , θk+1) =
(fk(θ1, . . . , θk) cos θk+1, sin θk+1). Hence, since Rn is path-connected so is
Sn.]

10. (a) Using the notation in the question and in the proof of Proposi-
tion 1.17, we prove that (g∗ ◦ f∗) = (g ◦ f)∗ : π0(X)→ π0(Y ) by evaluating
each function as follows. For [x] ∈ π0(X), (g∗ ◦ f∗)([x]) = g∗

(
f∗([x])

)
=

g∗([f(x)]) = [g
(
f(x)

)
] = [(g ◦ f)(x)] = (g ◦ f)∗([x]).

(b) To evaluate the function (IX)∗ : π0(X) → π0(X) induced by the iden-
tity function IX : X → X we simply use the definition. So for [x] ∈ π0(X),
(IX)∗[x] = [IX(x)] = [x] which means that (IX)∗ = Iπ0(X) : π0(X)→ π0(X).

[The properties of π0(X) in (a) and (b) are called the functorial properties.
Many constructions in topology satisfy these properties.]

(c) Now, if g : Y → X is the inverse of a homeomorphism f : X → Y , we have
g ◦f = IX and f ◦g = IY , Hence g∗ ◦f∗ = (g ◦f)∗ (by (a)) = (IX)∗ = Iπ0(X)

(by (b)) and similarly f∗ ◦ g∗ = Iπ0(Y ) so that g8 is the inverse of f∗.
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11. [0, 1] has precisely two cut points of type 1 (the two end points), [0, 1)
only has one, whereas (0, 1) doesn’t have any. Hence they are are topo-
logically distinct since homeomorphic spaces have the same number of cut
points of each type.

12. The proof is more or less the same as the proof of Theorem 1.20.
Let f : X → Y be a homeomorphism. If {p, q} ⊂ X us an n-pair, then
{f(p), f(q)} ⊂ Y is also an n-pair since f induces a homeomorphism X \
{p, q} → Y \ {f(p), f(q)} which therefore have the same number of path-
components by Proposition 1.17. Hence f induces a bijection between the
n-pairs of X and the n-pairs of Y and so the number of n-pairs is the same.
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