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1. This question is based on Definition 2.4 and refers to the usual topology
on R. We determine whether a subset if open by checking whether or not it
contains an ε-ball of each of its points.

(a) For each a ∈ (0, 1) let ε = min(a, 1−a) > 0. Then Bε(a) = (a−ε, a+ε) ⊂
(0, 1) since 0 6 a− ε < a+ ε 6 1. Hence (0, 1) is an open subset of R.

(b) Suppose that a ∈ (0, 1]. If 0 < a < 1 then, since (0, 1) ⊂ (0, 1], if

ε = min(a, 1 − a), B
[−1,1]
ε (a) = Bε(a) ⊂ (0, 1] (as in part (a)). The other

point of (0, 1] is 1. First of all B
[−1,1]
1 (1) = {x ∈ [−1, 1] | |x − 1| < 1 } =

(0, 1] ⊂ (0, 1]. Hence (0, 1] is open in [−1, 1]. On the other hand, for any
ε > 0, BR

ε (1) = (1−ε, 1+ε) 6⊂ (0, 1] since 1+ε/2 ∈ (1−ε, 1+ε) but 6∈ (0, 1].
Hence (0, 1] is not open in R.

(c) First of all BZ
1 (1) = {1} and so {1} is an open subset of Z. However, for

any ε > 0, BR
ε (1) = (1− ε, 1 + ε) 6⊂ {1} and so {1} is not an open subset of

R.

2. (a) This is not a topology since arbitrary unions of finite sets need not
be finite.

(b) This is a topology (the cofinite topology). Suppose that R \ F1 and
R \F2 are complements of finite subsets Fi of R. Then (R \F1)∩ (R \F2) =
R\(F1∪F2) is the complement of a finite set and so the intersection condition
holds. For the union condition, suppose that R \ Fλ are complements of
finite sets in R for λ ∈ Λ. Then

⋃
λ∈Λ(R \ Fλ) = R \

⋂
λ∈Λ Fλ which is the

complement of a finite set since
⋂
λ∈Λ Fλ ⊂ Fλ0 for any λ0 ∈ Λ.

[Notice that it is a bit easier to do this question using Proposition 2.16.
Since the union of two finite subsets is finite and the intersection of any
collection of finite subsets is finite, the finite subsets of R (together with R)
are the closed subsets of a topology on R.]

(c) This is a topology. The intersection condition is easy: (a1,∞)∩(a2,∞) =
(a,∞) where a = max(a1, a2). The union condition needs a bit of material
from real analysis. Suppose that we are given a collection of sets (aλ,∞)
where λ ∈ Λ. If the set {aλ} is not bounded below then

⋃
λ∈Λ(aλ,∞) = R

since for every x ∈ R there must be some aλ < x. If the set {aλ} is bounded
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below then let a be the greatest lower bound (also known as the imfimum).
Then

⋃
λ∈Λ(aλ,∞) = (a,∞). To see this observe that it is clear that the

left subset is a subset of the right subset since a 6 aλ for all λ. On the other
hand, for x ∈ (a,∞), a < x and so x is not a lower bound of the aλ. Hence
x > aλ for some λ, i.e. x ∈ (aλ,∞) and so (a,∞) ⊂

⋃
λ∈Λ(aλ,∞).

(d) This is not a topology since the union condition fails. For example⋃
a>0[a,∞) = (0,∞).

(e) This is a topology (the included point topology). For the intersection
condition 0 ∈ U1 and 0 ∈ U2 ⇒ 0 ∈ U1 ∩ U2. For the union condition
0 ∈ Uλ for all λ ∈ Λ⇒ 0 ∈

⋃
λ∈Λ Uλ.

(e) This is a topology (the excluded point topology). For the intersection
condition 0 6∈ U1 and 0 6∈ U2 ⇒ 0 6∈ U1 ∩ U2. For the union condition
0 6∈ Uλ for all λ ∈ Λ⇒ 0 6∈

⋃
λ∈Λ Uλ.

3. The subsets of X = {a, b, c} are ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
X. Each topology will be a collection of these including ∅ and X. To list
these systematically we consider the number of singleton open subsets which
must be between 0 and 3.

(a) Three singleton open subsets. The only possibility is

(i) the discrete topology

since by the union condition all three two point subsets must also be in the
topology.

(b) Two singleton open subsets, say {a} and {b}. Then by the union condi-
tion {a, b} must also be an open subset. The possibilities are:

(ii) (three topologies)
{
∅, X, {a}, {b}, {a, b}

}
(and two other homeomorphic

topologies by choosing other pairs of points),

(iii) (six topologies)
{
∅, X, {a}, {b}, {a, b}, {a, c}

}
(and five other homeomor-

phic topologies by permuting a, b and c).

There are no other possibilities since the intersection condition means that
{a, c} and {b, c} cannot both be open subsets since this would imply that
{c} was open giving case (a).

(c) One singleton open subset, say {a}. The possibilities are:

(iv) (three topologies)
{
∅, X, {a}

}
(and two other homeomorphic topologies

by choosing the other points),

(v) (six topologies)
{
∅, X, {a}, {a, b}

}
(and five other homeomorphic topolo-

gies by permuting a, b and c),
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(vi) (three topologies)
{
∅, X, {a}, {a, b}, {a, c}

}
(and two other homeomor-

phic topologies by starting from the other points),

(vii) (three topologies)
{
∅, X, {a}, {b, c}

}
(and two other homeomorphic

topologies by starting from the other points).

There are no other possibilities since the intersection condition means that,
for example, {a, c} and {b, c} cannot both be open subsets.

(d) No singleton open subsets. The possibilities are:

(viii) {∅, X}, the indiscrete topology,

(ix) (three topologies)
{
∅, X, {a, b}

}
(and two other homeomorphic topolo-

gies by selecting the other pairs of points).

There are no other possibilities since the intersection condition means that
there cannot be two two point open subsets.

This gives 29 topologies on a set of three elements divided into nine home-
omorphism classes.

4. Given continuous functions f : X → Y and g : Y → Z, let V be an open
subset of Z. Then, since g is continuous g−1(V ) is an open subset of Y and
so, since f is continuous, (g ◦ f)−1(V ) = f−1g−1(V ) is an open subset of X.
Hence g ◦ f : X → Z is continuous.

5. Suppose that f : X → Y is a bijection of topological spaces.

(a) For each V ⊂ Y , V = f(U) where U = f−1(V ) (since f is a bijection).
Hence f is continuous if and only if (V open in Y ⇒ f−1(V ) open in X)
(Definition 2.12) if and only if (f(U) open in Y ⇒ U open in X).

(b) Let g = f−1 : Y → X. Then g−1 = f . Hence, for U ⊂ X, g−1(U) =
f(U). So g = f−1 is continuous if and only if (U open in X ⇒ g−1(U) open
in Y ) if and only if (U open in X ⇒ f(U) open in Y ).

Hence, f us a homeomorphism if and only if (U open in X ⇔ f(U) open in
Y ).

6. For a topological space X, IX : X → X is continuous since for an open
subset V ⊂ X, I−1

X (V ) = V which is an open subset of X. Hence IX is a
homeomorphism since I−1

X = IX .

7. For topological spaces X and Y and a point a ∈ Y , given an open subset
V ⊂ Y , c−1

a (V ) = X if a ∈ V and c−1
a (V ) = ∅ if a 6∈ V and so in all cases

c−1
a (V ) is an open subset of X. Hence ca : X → Y is continuous.
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8. Suppose that f : X → Y is continuous. Then, if A is closed in Y , Y \A
is open in Y and so f−1(Y \ A) = X \ f−1(A) is open in X from which we
conclude that f−1(A) is closed in X, as required. The proof of the converse
is obtained by interchanging the use of ‘open’ and ‘closed’ in the previous
sentence.

9. Suppose that f : X → Y is continuous and B is a basis for the topology
of Y . Then, given V ∈ B, since V is open f−1(V ) is open in X. For the
converse, suppose that the given condition holds. Then, for an open subset
V of Y , since B is a basis V =

⋃
Vλ for certain elements Vλ of B. So

f−1(V ) =
⋃
f−1(Vλ) is a union of open subsets and so is open as required

to prove f continuous.

10. Suppose that U is an open subset of Rn in the usual topology. Then,
by Definition 2.4, for each x ∈ U , there is a real number εx > 0 such that
Bεx(x) ⊂ U . Then U =

⋃
x∈U Bεx(x) as required. [Example 2.23 is a special

case of this.]

11. Suppose that a collection of open subsets B ⊂ P(X) is the basis for a
topology τ . Then B ⊂ τ since a basis is a collection of open subsets, and
each subset in τ is a union of subsets in B.
(a) Given x ∈ X, since X is open it is a union of subsets in B. Hence, there
must be a subset U ∈ B such that x ∈ U .
(b) Given x ∈ U1 ∩U2 where Ui ∈ B, since then Ui ∈ τ , U1 ∩U2 ∈ τ . Hence
U1 ∩ U2 is a union of subsets in B and so there is a subset U ∈ B such that
x ∈ U ⊂ U1 ∩ U2.

For the converse, suppose that B ⊂ P(X) satisfies the condition in the
question. Let τ ⊂ P(X) be the collection of subsets of X given by all
possible unions of the subsets in B. We need to confirm that τ is a topology
on X. (i) ∅ ∈ τ by taking the empty union and X ∈ τ by taking the union
of all of the subsets in A (by condition (a)).
(ii) Suppose that V1, V2 ∈ τ . Then for x ∈ V1 ∩ V2 since V1 is a union of
subsets in B there is a subset U1 ∈ B such that x ∈ U1 ⊂ V1. Similarly,
there is a subset U2 ∈ B such that x ∈ U2 ⊂ V2. Hence x ∈ U1 ∩ U2 and so,
by condition (b), there is a subset Ux ∈ B such that x ∈ Ux ⊂ U1∩U2 and so
x ∈ Ux ⊂ V1 ∩ V2. It follows that V1 ∩ V2 =

⋃
x∈V1∩V2 Ux and so V1 ∩ V2 ∈ τ

as required by the definition of τ .
(iii) Suppose that Vλ ∈ τ for λ ∈ Λ. Then each Vλ is a union of subsets in B
and so

⋃
λ∈Λ Vλ is a union of subsets in B. Hence

⋃
λ∈Λ Vλ ∈ τ as required
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by the definition of τ
Hence τ is a topology on X.

12. Suppose that f : X → {0, 1} is a surjection. The usual topology on
{0, 1} is the discrete topology. Hence {0} is open in {0, 1} and so U = f−1(0)
is open in X. Similarly f−1(1) is open in X and so U = f−1(0) = X \f−1(1)
is closed. U is a proper subset since both f−1(0) and f−1(1) are non-empty
because f is a surjection.
For the converse suppose that U is a proper subset of X which is both open
and closed. Then we may define f : X → {0, 1} by f(x) = 0 if x ∈ U and
f(x) = 1 if x 6∈ U . This is a surjection since U is a proper subset. To see
that it is continuous observe that the proper open subsets of {0, 1} are {0}
and {1}. Since f−1(0) = U and f−1(1) = X \ U both of which are open in
X, f is continuous.

To see that such a space X is not path-connected we use a proof by contra-
diction. So suppose that X is path-connected. Then let x, x′ be points
of X such that f(x) = 0 and f(x′) = 1. Since X is path-connected
there is a path γ : [0, 1] → X from x to x′. Composition with the con-
tinuous surjection f and the inclusion map i : {0, 1} → R gives a function
i ◦ f ◦ γ : [0, 1] → X → {0, 1} → R which does not take values between
the values 0 and 1, contradicting the Intermediate Value Theorem (Theo-
rem 0.23). [Or alternatively we can say that f ◦ γ is a continuous surjection
from a path-connected space to a non-path-connected space contradicting
Theorem 1.9.] Hence X is not path-connected.

[A topological space which does not have a proper open and closed subset
is said to be connected. So the above argument shows that if a topological
space is not connected then it is not path-connected or, equivalently, if it is
path-connected then it is connected. It is not difficult to show that a con-
nected open subset of Rn is path-connected (see Armstrong, Theorem 3.30).
However, in general the two notions are different. The standard example of
a topological space which is connected but not path-connected is the union
of the graph of the function sin(1/x) and the y-axis (see Armstrong, pages
62 and 63 for the details). Most books (including Armstrong) use connect-
edness as the basic notion but I prefer to use path-connectedness since it
seems a more natural idea.]

13. For X with the discrete topology the map given by a 7→ 0, b 7→ 1 is a
continuous surjection (since all maps from a discrete space are continuous)
and so, by Question 12, X is not path-connected.
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For X with the indiscrete topology define γ : [0, 1]→ X by γ(t) = a for 0 6
t < 1 and γ(1) = b. This is continuous (since all maps to an indiscrete space
are continuous) and gives a path from a to b and so X is path-connected.
For X with the Sierpinski topology

{
∅, X, {a}

}
, the map γ defined above is

continuous since γ−1({a}) = [0, 1) is open in [0, 1] with the usual topology
and so X is path-connected.

14. Set X = Spec(R). We show that the complements

V (I) = X \ UI = {p ∈ Spec(R) | I ⊆ p}

fulfil the properties of a collection of closed subsets in Proposition 2.20.
Now, ∅ = V ((1)) and X = V ((0)).

One has V (I) ∪ V (J) = V (IJ), with IJ = (ab | a ∈ I, b ∈ J). Note, that
IJ ⊂ I and IJ ⊂ J . Hence, V (I) ∪ V (J) ⊂ V (IJ). For the other inclusion
assume that p ∈ V (IJ), i.e. IJ ⊂ p. Since p is prime either I ⊂ p or J ⊂ p
(else there would be an element ab ∈ IJ ⊂ p with a /∈ p and b /∈ p).

For a collection of closed subset Vλ = V (Iλ) with λ ∈ Λ. One considers the
ideal I generated by all the Iλ, i.e. the smallest ideal which contains all the
Iλ. Since I contains all the Iλ it follows V (I) ⊂ V (Iλ). Hence,

V (I) ⊂
⋂
λ

V (Iλ).

On the other hand, if p ∈
⋂
λ V (Iλ), then it containes all the Iλ but since p

is an ideal it also has to contain I (by defintion the smallest ideal containing
all the Iλ). Hence, p ∈ V (I) and we conclude

V (I) =
⋂
λ

V (Iλ).
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