
Solutions 6

1. In the indiscrete topology on X there are only two open sets (∅ and X)
and so any open cover of any subset A is already finite. Hence A is compact.

2. Suppose that K1 and K2 are compact subsets and F is an open cover
for K1 ∪K2. Then F is an open cover for K1 and so has a finite subcover
F1 for K1 and similarly F has a finite subcover F2 for K2. Then F1 ∪F2 is
a finite subcover for K1 ∪K2. Hence K1 ∪K2 is compact.

Now suppose that Ki are compact subsets for 1 6 i 6 n. We prove that⋃n
i=1Ki is compact by induction on n. The result is trivial for n = 1.

Suppose as inductive hypothesis that the result is true for n = k. The it
follows that it true for n = k + 1 by the above argument since

⋃k+1
i=1 Ki =(⋃k

i=1Ki

)
∪ Kk+1 proving the inductive step. Hence the result is true for

all n.

For a counterexample, the singleton subset {n} in R with the usual topology
is compact but the union

⋃
n∈Z{n} = Z is not compact.

3. Suppose that F is an open cover for a non-empty open subset A ⊂ R
in the cofinite topology. For a ∈ A, a ∈ U0 for some open subset U0 in
F . Then either U0 = R, in which case A ⊆ U0 so that {U0} is a finite
subcover for A, or U0 = R \ {x1, x2, . . . , xn} the complement of some finite
set {x1, x2, . . . , xn}. Reordering this finite set if necessary, suppose that
{x1, . . . , xk} are the points of the finite set which lie in A. For each such
point, since F is an open cover for A there must be some open subset
Ui ∈ F such that xi ∈ Ui. Then {Ui | 0 6 i 6 k } is a finite subcover for A
as required to prove that R with this topology is compact.

4. (a) This is immediate since each open subset in this topology is open in
the usual topology.

(b) Suppose that F is an open cover for [a, b). Then there must be an
open set U ∈ F such that a ∈ U . But, by the definition of the topology,
U = (a1,∞) for some a1 ∈ R. Since a ∈ (a1,∞) we must have a1 < a and
so [a, b) ⊆ (a1,∞) so that {U} is a finite subcover for [a, b) consisting of a
single open subset. Hence [a, b) is compact. Similarly, [a,∞) is compact.

(c) The open covering { (a+1/n,∞) | n > 1 } for (a, b] has no finite subcover
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so (a, b] is not compact.
The open covering { (−n,∞) | n > 1 } for (−∞, b] has no finite subcover
and so (−∞, b] is not compact.

5. Suppose for contradiction that the subsets An are as in the question but
that

⋂∞
n=1An = ∅. Then

⋃∞
n=1(X\An) = X\

⋂∞
n=1An = X and so {X\An |

n > 1 } is an open cover for X and so for A1. But now, since A1 is compact,
there must be a finite subcover of A1. Now notice that the nesting of the
subsets An means that X \A1 ⊆ X \A2 ⊆ · · · ⊆ X \An ⊆ X \An+1 ⊆ · · · .
Let X \ Ak be the largest subset in the finite subcover. Then A1 ⊆ X \ Ak
(since X \An ⊆ X \Ak for n 6 k by the nesting of the subsets An). Hence
Ak ⊆ A1 ⊆ X \ Ak which implies that Ak = Ak ∩ A1 = ∅ contradicting the
choice of the sets An as non-empty subsets. Hence,

⋂∞
n=1An is non-empty

as required.

[This result is important in dynamical systems.]

6. Suppose that A is a closed subset of a compact Hausdorff space X and
b is a point of X such that b 6∈ A. Since X is a Hausdorff space, for each
point a ∈ A there are disjoint open subsets Ua and Va such that a ∈ Ua
and b ∈ Va. Then the collection of open subsets {Ua | a ∈ A } is an open
cover for A since each point of A lies in Ua, one of the open subsets in the
covering. Now, since X is compact and A is a closed subset, A is compact
(Proposition 4.6). Hence there is a finite subcover {Uai | 1 6 i 6 n } for A.
This means that A ⊆

⋃n
i=1 Uai = U , say. U is a union of open subsets and

so is an open subset. Now let V =
⋂n
i=1 Vai . Then V is a finite intersection

of open subsets and so is open. By definition b ∈ Va for all a and so b ∈ V .
Finally, U and V are disjoint. To see this, observe that, for 1 6 i 6 n,
Uai ∩ Vai = ∅ and so Uai ∩ V = ∅ since V ⊆ Vai . Hence U ∩ V = ∅ by the
definition of U . Hence U and V are disjoint open subsets as required.

[Notice that we needed the compactness of A in order to get a finite in-
tersection. Only a finite intersection of open subsets can be guaranteed to
be open. This style of proof is one of the most important applications of
compactness.]

7. (a) Problems 4, Question 2. X is compact because it is a closed bounded
set in R2 with the usual topology and so X/S1 = q(X) is compact since is
the continuous image of a compact set. D2 is Hausdorff since it is a sub-
space of R2 with the usual topology. Hence the function F : X/S1 → D2
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is a continuous bijection from a compact space to a Hausdorff space and is
therefore a homeomorphism.

(b) Problems 4, Question 3. S1 ⊂ R2 and [−1, 1] ⊂ R are compact as closed
bounded sets in Euclidean spaces with the usual topology and so S1× [−1, 1]
is compact as the product of two compact spaces. Hence the identification
space in the question is compact since it is the continuous image of a com-
pact set. S2 is Hausdorff since it is a subspace of R3 with the usual topology.
Hence the function F in the solution is a continuous bijection from a com-
pact space to a Hausdorff space and is therefore a homeomorphism.

(c) Problems 4, Question 4. S1 and [−1, 1] are compact (both closed bounded
sets in Euclidean spaces with the usual topology) and so the product S1 ×
[−1, 1] is compact. Hence S1× [−1, 1]/∼ = q(S1× [−1, 1]) is compact. S1 is
Hausdorff (subspace of Euclidean space) and so S1×S1 is Hausdorff. Hence
the function F in the solution is a continuous bijection from a compact space
to a Hausdorff space and is therefore a homeomorphism.

(d) Problems 4, Question 6. P 2 is the continuous image of compact S2 and
so is compact. F (P 2) is a subspace of R4 and so is Hausdorff. Hence the
continuous bijection F : P 2 → F (P 2) is a homeomorphism.

(e) Problems 4, Question 8. D2 ⊂ R2 is compact as a closed bounded subset
of a Euclidean space with the usual topology and so the identification space
in the question is compact since it is the continuous image of a compact set.
P 2 is Hausdorff because, by Problems 4, Question 6 and Problems 7, Ques-
tion 7(d), it is homeomorphic to a subspace of R4 with the usual topology.
Hence the continuous function F in the solution is a continuous bijection
from a compact space to a Hausdorff space is a homormorphism.
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8. (a) We prove that b ∈ K by contradiction. Suppose for contradiction
that b 6∈ K so that b ∈ R \ K, an open set. Then by the definition of
the open sets in the usual topology there is a real number ε > 0 such that
(b− ε, b+ ε) ⊆ R \K so that b− ε is an upper bound for K, contradicting
the definition of b as the least upper bound. Hence b ∈ K.

(b) By a similar argument, if a = inf K (the greatest lower bound) then
a ∈ K. Hence K ⊆ [a, b], a ∈ K and b ∈ K. However, since K is a
path-connected there is a path in K from a to b and by the Intermediate
Value Theorem (Theorem 0.23) every point of [a, b] lies on this path. Hence
[a, b] ⊆ K. Hence K = [a, b].

(c) If f : X → R is a continuous function from a non-empty path-connected
compact space X then f(X) is a non-empty path-connected compact subset
of R since the continuous image of a path-connected space is path connected
(Problems 1, Question 5) and the continuous image of a compact set is
compact (Proposition 4.3). Hence f(X) is a closed interval [a, b] by part
(b).

9. In the example given, I0 = (0, 1) which divides into two subintervals
(0, 1/2] and [1/2, 1). The second of the subintervals lies in (1/3, 1) and
so there is a finite subcover for this subinterval. However, there is not
for (0, 1/2] and so a1 = 0 and b1 = 1/2. This interval divides into two
subintervals (0, 1/4] and [1/4, 1/2]. The second of these lies in (1/5, 1) but
there is no subcover for the first. Hence a2 = 0 and b2 = 1/4. Continuing
in this way we find that an = 0 for all n and bn = 1/2n so that α =
limn→∞ an = limn→∞ bn = α = 0. At this point the proof breaks down
because α = 0 6∈ (0, 1) and α = 0 does not lie in any open set of the cover.

10. First check that τ∗ is a topology. Indeed X∗ = X \ ∅ ∪ {∞} ∈ τ∗ and
∅ ∈ τ ⊂ τ∗. Moreover, if U, V ∈ τ∗ then U ∩ V ∈ τ∗ this is clear if both are
in τ . Assume U ∈ τ and V = X \ C ∪ {∞} then

U ∩ V = U ∩ (X \ C) ∈ τ ⊂ τ∗,

since C is closed in X by the Hausdorff property. Assume U = X \C ∪{∞}
and V = X \K ∪ {∞} then

U ∩ V = X \ (C ∪K) ∪ {∞} ∈ τ∗,

since a finite union of compact sets is compact by Problem 6.2.
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Now, consider a union of open sets in τ∗.⋃
λ

Uλ ∪
⋃
µ

Vµ.

with Uλ ∈ τ and
Vµ = X \ Cµ ∪ {∞}.

Now, U =
⋃
λ Uλ ∈ τ ⊂ τ∗ since τ is a topology and

V =
⋃
µ

Vµ = X \
⋂
µ

Cµ ∪ {∞} ∈ τ∗,

since
⋂
µCµ is a closed subset of a compact set (of every Cµ), hence, it is

compact. Now it remains to show that U∪V for U ∈ τ and V = X\C∪{∞}
is open:

U ∪ V = X \ (C ∩ (X \ U)) ∪ {∞}.

But (X \ U) is closed in X hence (C ∩ (X \ U) ⊂ C is a closed subset of a
compact set. Hence, it is compact and X \ (C ∩ (X \ U)) ∪ {∞} ∈ τ∗.

Now, consider an open cover F of X∗. In order to cover ∞ it has to include
at least one open subset U∞ of the form X \ C ∪ {∞} where C ⊂ X is
compact. Now, F ′ = {U ∩X | U ∈ F} is an open cover of X (since U and
X are open in X∗) and hence of C.

By compactness of C a finite subcover {U1 ∩X, . . . , Um ∩X} ⊂ F suffices
to cover C. But then one has the finite subcover {U∞, U1, . . . , Um} ⊂ F .
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