Solutions 6

1. In the indiscrete topology on X there are only two open sets () and X)
and so any open cover of any subset A is already finite. Hence A is compact.

2. Suppose that K; and Ko are compact subsets and F is an open cover
for K1 U Ko. Then F is an open cover for K; and so has a finite subcover
JF1 for Ky and similarly F has a finite subcover F» for Ko. Then F; U Fo is
a finite subcover for K7 U K. Hence K7 U K5 is compact.

Now suppose that K; are compact subsets for 1 < ¢ < n. We prove that
Ui, K; is compact by induction on n. The result is trivial for n = 1.
Suppose as inductive hypothesis that the result is true for n = k. The it
follows that it true for n = k + 1 by the above argument since Ufill K, =
(Uf:1 Ki) U K1 proving the inductive step. Hence the result is true for
all n.

For a counterexample, the singleton subset {n} in R with the usual topology
is compact but the union (J,,cz{n} = Z is not compact.

3. Suppose that F is an open cover for a non-empty open subset A C R
in the cofinite topology. For a € A, a € Uy for some open subset Uy in
F. Then either Uy = R, in which case A C Uy so that {Up} is a finite
subcover for A, or Uy = R\ {z1,x9,...,2,} the complement of some finite
set {z1,22,...,2,}. Reordering this finite set if necessary, suppose that
{z1,...,x} are the points of the finite set which lie in A. For each such
point, since F is an open cover for A there must be some open subset
U; € F such that x; € U;. Then {U; | 0 < i < k} is a finite subcover for A
as required to prove that R with this topology is compact.

4. (a) This is immediate since each open subset in this topology is open in
the usual topology.

(b) Suppose that F is an open cover for [a,b). Then there must be an
open set U € F such that a € U. But, by the definition of the topology,
U = (a1,00) for some a; € R. Since a € (a1,00) we must have a; < a and
so [a,b) C (a1,00) so that {U} is a finite subcover for [a,b) consisting of a
single open subset. Hence [a, ) is compact. Similarly, [a, c0) is compact.

(c) The open covering { (a+1/n,00) | n > 1} for (a, b] has no finite subcover



so (a,b] is not compact.
The open covering { (—n,00) | n > 1} for (—oo,b] has no finite subcover
and so (—o0,b] is not compact.

5. Suppose for contradiction that the subsets A,, are as in the question but
that ()72 A, = 0. Then U2, (X\4,) = X\, 4, = X and so { X\ 4, |
n > 1} is an open cover for X and so for A;. But now, since A; is compact,
there must be a finite subcover of A;. Now notice that the nesting of the
subsets A, means that X \ A] C X\ A2 C---C X\ A, CX\A4,41C---.
Let X \ Ay be the largest subset in the finite subcover. Then A; C X \ A
(since X \ A, € X \ Ay for n < k by the nesting of the subsets A,). Hence
A € A1 C X \ Ay which implies that Ay = A N Ay = () contradicting the
choice of the sets A, as non-empty subsets. Hence, ()o—; A, is non-empty
as required.

[This result is important in dynamical systems.]

6. Suppose that A is a closed subset of a compact Hausdorff space X and
b is a point of X such that b € A. Since X is a Hausdorff space, for each
point @ € A there are disjoint open subsets U, and V, such that a € U,
and b € V,. Then the collection of open subsets {U, | a € A} is an open
cover for A since each point of A lies in U,, one of the open subsets in the
covering. Now, since X is compact and A is a closed subset, A is compact
(Proposition 4.6). Hence there is a finite subcover {U,, | 1 < < n} for A.
This means that A C |J;, U,, = U, say. U is a union of open subsets and
so is an open subset. Now let V =\, V;,. Then V is a finite intersection
of open subsets and so is open. By definition b € V, for all @ and so b € V.
Finally, U and V are disjoint. To see this, observe that, for 1 < ¢ < n,
Uy, NV, =0 and so Uy, NV = ) since V C V,,. Hence UNV = () by the
definition of U. Hence U and V are disjoint open subsets as required.
[Notice that we needed the compactness of A in order to get a finite in-
tersection. Only a finite intersection of open subsets can be guaranteed to
be open. This style of proof is one of the most important applications of
compactness.]

7. (a) Problems 4, Question 2. X is compact because it is a closed bounded
set in R? with the usual topology and so X/S' = ¢(X) is compact since is
the continuous image of a compact set. D? is Hausdorff since it is a sub-
space of R? with the usual topology. Hence the function F: X/S' — D?



is a continuous bijection from a compact space to a Hausdorff space and is
therefore a homeomorphism.

(b) Problems 4, Question 3. S € R? and [~1,1] C R are compact as closed
bounded sets in Euclidean spaces with the usual topology and so St x [~1,1]
is compact as the product of two compact spaces. Hence the identification
space in the question is compact since it is the continuous image of a com-
pact set. S? is Hausdorff since it is a subspace of R? with the usual topology.
Hence the function F' in the solution is a continuous bijection from a com-
pact space to a Hausdorff space and is therefore a homeomorphism.

(c) Problems 4, Question 4. St and [—1, 1] are compact (both closed bounded
sets in Euclidean spaces with the usual topology) and so the product S x
[~1,1] is compact. Hence S! x [~1,1]/~ = q(S' x [~1,1]) is compact. S! is
Hausdorff (subspace of Euclidean space) and so S! x S* is Hausdorff. Hence
the function F' in the solution is a continuous bijection from a compact space
to a Hausdorff space and is therefore a homeomorphism.

(d) Problems 4, Question 6. P? is the continuous image of compact S? and
so is compact. F(P?) is a subspace of R* and so is Hausdorff. Hence the
continuous bijection F': P2 — F(P?) is a homeomorphism.

(e) Problems 4, Question 8. D? C R? is compact as a closed bounded subset
of a Euclidean space with the usual topology and so the identification space
in the question is compact since it is the continuous image of a compact set.
P? is Hausdorff because, by Problems 4, Question 6 and Problems 7, Ques-
tion 7(d), it is homeomorphic to a subspace of R* with the usual topology.
Hence the continuous function F' in the solution is a continuous bijection
from a compact space to a Hausdorff space is a homormorphism.



8. (a) We prove that b € K by contradiction. Suppose for contradiction
that b ¢ K so that b € R\ K, an open set. Then by the definition of
the open sets in the usual topology there is a real number € > 0 such that
(b—¢e,b+¢) CR\ K so that b — ¢ is an upper bound for K, contradicting
the definition of b as the least upper bound. Hence b € K.

(b) By a similar argument, if a = inf K (the greatest lower bound) then
a € K. Hence K C [a,b], a € K and b € K. However, since K is a
path-connected there is a path in K from a to b and by the Intermediate
Value Theorem (Theorem 0.23) every point of [a, b] lies on this path. Hence
[a,b] C K. Hence K = [a,b].

(c) If f: X — R is a continuous function from a non-empty path-connected
compact space X then f(X) is a non-empty path-connected compact subset
of R since the continuous image of a path-connected space is path connected
(Problems 1, Question 5) and the continuous image of a compact set is
compact (Proposition 4.3). Hence f(X) is a closed interval [a,b] by part

(b).

9. In the example given, Iy = (0,1) which divides into two subintervals
(0,1/2] and [1/2,1). The second of the subintervals lies in (1/3,1) and
so there is a finite subcover for this subinterval. However, there is not
for (0,1/2] and so a; = 0 and by = 1/2. This interval divides into two
subintervals (0,1/4] and [1/4,1/2]. The second of these lies in (1/5,1) but
there is no subcover for the first. Hence aa = 0 and by = 1/4. Continuing
in this way we find that a, = 0 for all n and b, = 1/2" so that a =
limy, oo ap, = limy, oo b, = o = 0. At this point the proof breaks down
because @ = 0 ¢ (0,1) and o = 0 does not lie in any open set of the cover.

10. First check that 7* is a topology. Indeed X* = X \ ) U {c0} € 7* and
0 € 7 C 7*. Moreover, if U,V € 7* then U NV € 7* this is clear if both are
in7. Assume U € 7 and V = X \ C U {0} then

UNnV=Un(X\C)ercr,

since C'is closed in X by the Hausdorff property. Assume U = X \ C'U{oc0}
and V = X \ K U {oo} then

UNV =X\ (CUK)U{oc} € 7",

since a finite union of compact sets is compact by Problem 6.2.



Now, consider a union of open sets in 7%.
UunuJVe
A "

with Uy € 7 and
Vie=X\CuU{oo}.

Now, U =, U € 7 C 7" since 7 is a topology and
V=V, =x\[)C.U{x} e,
Iz I

since (), O, is a closed subset of a compact set (of every C),), hence, it is
compact. Now it remains to show that UUV for U € 7 and V = X\ CU{oc}
is open:

UUV =X\ (CN(X\U))U{oo}.

But (X \ U) is closed in X hence (CN (X \U) C C is a closed subset of a
compact set. Hence, it is compact and X \ (CN (X \U)) U{oo} € 7.

Now, consider an open cover F of X*. In order to cover oo it has to include
at least one open subset Uy of the form X \ C'U {oo} where C' C X is
compact. Now, F/ ={UNX | U € F} is an open cover of X (since U and
X are open in X*) and hence of C.

By compactness of C' a finite subcover {U; N X, ..., U, N X} C F suffices
to cover C. But then one has the finite subcover {Us, Uy, ..., Upn} C F.



