Problems 7: The Fundamental Group

1. (a) Given a path \(\sigma : I \to X \) from \(x_0 \) to \(x_1 \) in a topological space \(X \), prove that
\[
\sigma \ast \varepsilon_{x_1} \sim \sigma.
\]
[Proposition 6.8, second part]
(b) Given two homotopic paths \(\sigma_0 \sim \sigma_1 \) from \(x_0 \) to \(x_1 \) in a topological space \(X \), prove that \(\overline{\sigma}_0 \sim \overline{\sigma}_1 \). [Proposition 6.10]

2. Suppose that \(X \) is a convex subset of \(\mathbb{R}^n \) with the usual topology [see Problems 1, Question 7.] Prove that, all paths from \(x_0 \) to \(x_1 \in X \) are homotopic. Deduce that \(\pi_1(X) \cong I \), the trivial group.

3. Suppose that \(X \) is a path-connected space and \(x_0, x_1 \in X \). Prove that all paths from \(x_0 \) to \(x_1 \) are homotopic if and only if \(X \) is simply-connected.

4. Suppose that \(X \) is a path-connected topological space and \(x_0, x_1 \in X \). Prove that all paths \(\rho \) from \(x_0 \) to \(x_1 \) induce the same isomorphism \(u_\rho : \pi_1(X,x_0) \to \pi_1(X,x_1) \) if and only if the fundamental group \(\pi_1(X) \) is abelian.

5. Recall from the proof of Proposition 1.17 that a continuous function \(f : X \to Y \) of topological spaces induces a function \(f_* : \pi_0(X) \to \pi_0(Y) \) by \(f_*([x]) = [f(x)] \). Which of the following assertions are true in general? Give a proof or counterexample for each.
 (a) If \(f \) is surjective then \(f_* \) is surjective.
 (b) If \(f \) is injective then \(f_* \) is injective.
 (c) If \(f \) is bijective then \(f_* \) is bijective.