A1.

(a) Define what is meant by a topology on a set X.

(b) Define what is meant by saying that a function $f: X \to Y$ between topological spaces is continuous. Define what is meant by saying that f is a homeomorphism.

(c) Prove that the closed disc $D^2 = \{x \in \mathbb{R}^2 \mid |x| \leq 1\}$ with the usual topology is homeomorphic to the hemisphere $\{x = (x_1, x_2, x_3) \in S^2 \mid x_3 \geq 0\}$.

[Here S^2 denotes the unit sphere $\{x \in \mathbb{R}^3 \mid |x| = 1\}$ with the usual topology.]

[10 marks]

Solution

(a) Given a set X, a topology on X is a collection τ of subsets of X with the following properties:

(i) $\emptyset \in \tau$, $X \in \tau$;

(ii) the intersection of any two subsets in τ is in τ:

$$U_1, U_2 \in \tau \Rightarrow U_1 \cap U_2 \in \tau;$$

(iii) the union of any collection of subsets in τ is in τ:

$$U_\lambda \in \tau \text{ for all } \lambda \in \Lambda \Rightarrow \bigcup_{\lambda \in \Lambda} U_\lambda \in \tau.$$

[5 marks, bookwork]

(b) $f: X \to Y$ is continuous if

$$V \text{ is open in } Y \Rightarrow f^{-1}(V) \text{ is open in } X$$

[1 marks, bookwork]

A homeomorphism is a continuous bijection with continuous inverse.

[2 marks, bookwork]

(c) A homeomorphism $f: \{x \in S^2 \mid x_3 \geq 0\} \to D^2$ is given by $f(x_1, x_2, x_3) = (x_1, x_2)$ with inverse $f^{-1}(y_1, y_2) = (y_1, y_2, \sqrt{1 - y_1^2 - y_2^2})$.

[2 marks, question set]

[Total: 10 marks]

The question was generally well done. Some people didn’t come up with the homeomorphisms in (c). In (b) sometimes only the (old) definition for the case of subspaces of \mathbb{R}^n was given, but the question explicitly asks for the case of (general) topological spaces (i.e. there is no notion of distance or ϵ-balls).
A2.

(a) Define what is meant by saying that a topological space X is *path-connected*.

(b) What is meant by saying the path-connectedness is a *topological property*?

(c) Prove that path-connectedness is a topological property.

(d) Prove that $\{(x_1, x_2) \in \mathbb{R}^2 \mid |(x_1, x_2 - 1)| \leq 1 \text{ or } |(x_1, x_2 + 1)| \leq 1\} \subset \mathbb{R}^2$ (with the usual topology) is path-connected.

[10 marks]

Solution

(a) A *path* from x_0 to x_1 in X is a continuous function $\sigma: [0, 1] \rightarrow X$ with $\sigma(0) = x_0$ and $\sigma(1) = x_1$. X is said to be *path-connected* if, for each pair of points $x_0, x_1 \in X$, there is a path in X from x_0 to x_1.

[3 marks, bookwork]

(b) Saying that path-connectedness is a *topological property* means that, if $X \cong Y$ are homeomorphic topological spaces, then X is path connected if and only if Y is path-connected.

[1 marks, bookwork]

(c) To prove this, suppose that X is path-connected. Then, given two points $y_0, y_1 \in Y$ let $x_0, x_1 \in X$ be points such that $f(x_i) = y_i$ (these points exist since f is a bijection). Since X is path-connected there is a path $\sigma: I \rightarrow X$ such that $\sigma(0) = x_0$ and $\sigma(1) = x_1$. Then $f \circ \sigma: I \rightarrow Y$ is a path in Y from y_0 to y_1 (since the composition of continuous maps is continuous). Hence, Y is path-connected. Conversely, if Y is path-connected then so is X by the same argument (interchanging the roles of X and Y).

[3 marks, bookwork]

(d) First observe that $0 \in X$. Now, there is a path from every point of X to 0, which implies path-connectedness by composition of paths. Indeed, for $x = (x_1, x_2) \in X$ consider the path $\sigma(t) = tx$. Assume first, that $|(x_1, x_2 - 1)| \leq 1$ then one has for $|\sigma(t) - (0, 1)|$

$$|tx - (0, 1)| = |tx - t(0, 1) - (1 - t)(0, 1)| \leq |tx - t(0, 1)| + |(1 - t)(0, 1)|$$

$$= t \cdot |x - (0, 1)| + (1 - t)$$

$$\leq 1.$$

Hence $\sigma(t) \in X$ for $t \in [0, 1]$. Similarly for $|(x_1, x_2 + 1)| \leq 1$ one obtains $|\sigma(t) + (0, 1)| \leq 1$ and, hence, $\sigma(t) \in X$.

Hence, for to arbitrary points x, y a connecting path is given by

$$\tau(s) = \begin{cases}
(1 - 2s)x & s \in [0, 1/2] \\
(2s - 1)y & s \in [1/2, 1].
\end{cases}$$

[3 marks, new]
Except from part (d) the question was generally done well. Sometimes in (c) people showed that for two points in Y of the form $f(x_0)$ and $f(x_1)$ there is a path. But you also need to refer to surjectivity of f to see that all elements in Y are of this form. For (d) some people constructed a path along the straight line between two points. This doesn’t work here as the subset is not convex and, hence, doesn’t contain the straight line between arbitrary points. A good point to start with was to sketch the subset in order to come up with a good guess for constructing a connecting path.

A3.

(a) Define what is meant by saying that a topological space is Hausdorff.

(b) Determine whether the set $S = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a, c\}, \{b\}, \{a, b, c\}\}$ is Hausdorff.

(c) Suppose that X and Y are topological spaces. Define the product topology on the Cartesian product $X \times Y$. [It is not necessary to prove that this is a topology.]

(d) Prove that if $\Delta \subset X \times X$ is closed in the product topology, then X is Hausdorff.

[10 marks]

Solution

(a) The topological space X is Hausdorff if, for each distinct pair of points $x, y \in X$, there exist open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. [2 marks, bookwork]

(b) This space is not Hausdorff because every open subset containing a also contains c and so open subsets as required cannot be found for $x = a$ and $y = c$. [3 marks, bookwork]

(c) The product topology on $X \times Y$ has a basis

\[\{U \times V \mid U \text{ open in } X, V \text{ open in } Y\}, \]

i.e. the open sets consist of all unions of such sets. [3 marks, bookwork]

(d) Assume Δ is closed. Hence $X \times X \setminus \Delta$ is open. By definition of the product topology this means it is a union of open rectangles, i.e. sets of the form $U \times V \subset X \times X \setminus \Delta$ with U and V both open in X. Consider $x, y \in X$ with $x \neq y$ then (x, y) lies outside the diagonal. Hence, is has to be contained in such a set

\[U \times V \subset X \times X \setminus \Delta. \]

On the one hand this implies that $x \in U$ and $y \in V$. On the other hand $U \cap V = \emptyset$, since for $x \in U \cap V$ one would have $\Delta \ni (x, x) \in U \times V$. [2 marks, question set]
Problems occurred in (c), where people forgot that open subsets not only arise as open rectangles, but also as unions of such rectangles. For (d) quite a few people didn’t know that Δ was supposed to denote the diagonal, others did (indeed, the question was given in week 5 as an exercise with the solution being discussed in the tutorial). Nevertheless, in hindsight it would have been better to explicitly state the definition of Δ in the question. However, this issue was taken into account when marking the papers.

A4.

(a) Suppose that X_1 is a subspace of a topological space X. Define what is meant by saying that X_1 is a retract of X.

(b) Use the functorial properties of the fundamental group to prove that, if X_1 is a retract of X, then, for any $x_0 \in X_1$, the homomorphism induced by the inclusion map $i_* : \pi_1(X_1, x_0) \to \pi_1(X, x_0)$ is injective.

(c) Hence prove that S^1 is not a retract of the closed disc D^2.

[You may quote any fundamental groups that you need, without proof.]

Solution

(a) $X_1 \subset X$ is a retract of X when there is a continuous map $r : X \to X_1$, such that $r(x) = x$ for $x \in X_1$. [3 marks, bookwork]

(b) By the functorial properties we have

$$r_* \circ i_* = (r \circ i)_* = (\text{id}_{X_1})_* = \text{id}_{\pi_1(X_1, x_0)} : \pi_1(X_1, x_0) \to \pi_1(X_1, x_0).$$

Since the composition of r_* and i_* is bijective r_* must be surjective and i_* must be injective. [4 marks, bookwork]

(c) We have $\pi_1(S^1, x_0) = \mathbb{Z}$ and $\pi_1(D^2, x_0) = 1$, the trivial group. But there is not injective map $\mathbb{Z} \to \{1\}$. Hence, S^1 cannot be a retract of D^2. [3 marks, bookwork]

[Total: 10 marks]

In (a) sometimes it was stated that $i \circ r$ has to be the identity. Which clearly cannot be the case except if $X = X_1$. [4 of 9] P.T.O.
B5.

(a) Suppose that $q : X \to Y$ is a surjection from a topological space X to a set Y. Define the quotient topology on Y determined by q. State the universal property of the quotient topology.

(b) Suppose that $f : X \to Z$ is a continuous surjection from a compact topological space X to a Hausdorff topological space Z. Define an equivalence relation \sim on X so that f induces a bijection $F : X/\sim \to Z$ from the identification space X/\sim of this equivalence relation to Z. Prove that F is a homeomorphism. [State clearly any general results which you use.]

(c) Prove that the quotient space $[0, 1] \times [0, 1]/\sim$ with $(0, s) \sim (1, s)$ is homeomorphic to the cylinder $[0, 1] \times S^1 \subset \mathbb{R}^3$.

[15 marks]

Solution

(a) Given a topological space (X, τ) and a surjection $q : X \to Y$ the quotient topology on Y is given by

$$\{ V \subset Y \mid q^{-1}(V) \in \tau \}.$$

The universal property of the quotient topology is: $f : Y \to Z$ to a topological space Z is continuous if and only if the composition $f \circ q : X \to Z$ is continuous.

[4 marks, bookwork]

(b) Given a continuous surjection $f : X \to Z$, define an equivalence relation on X by $x \sim x' \iff f(x) = f(x')$. Then we may define $F : X/\sim \to Z$ by $F([x]) = f(x)$. Since $[x] = [x'] \iff x \sim x' \iff f(x) = f(x')$ (by the definition of the equivalence relation), the function F is well-defined. Since $F([x]) = F([x']) \iff f(x) = f(x')$ (by the definition of the equivalence relation) it follows that $[x] = [x']$ and F is injective. Since f is a surjection, $y = f(x)$ for some $x \in X$ and so $y = F([x])$. Hence F is a surjection. This shows that $F : X/\sim \to Z$ is a bijection. The map $F : X/\sim \to Z$ is continuous by the universal property since $F \circ q = f$ which is given as continuous, where $q : X \to X/\sim$ is the quotient map given by $q(x) = [x]$.

The space X/\sim is compact since it is the continuous image of a compact set. Hence F is a homeomorphism since it is a continuous bijection from a compact space to a Hausdorff space.

[7 marks, bookwork]

(c) To see this, define a surjection $f : I^2 \to I \times S^1$ by $f(x, y) = (y, \exp(2\pi ix))$ where we think of S^1 as $\{ z \in \mathbb{C} \mid |z| = 1 \}$ using the standard identification $\mathbb{C} \cong \mathbb{R}^2$. This function is continuous by the universal property of the product topology since the component functions are continuous. Now, $I \times S^1$ is Hausdorff (a subset of Euclidean space) and $I \times I$ is compact (a closed and bounded subset of Euclidean space). Now the result follows from (b).

[4 marks, bookwork]
B6.

(a) Define what is meant by a compact subset of a topological space and by a compact topological space.

(b) Prove that, if $f : X \to Y$ is a continuous function of topological spaces and $K \subset X$ is a compact subset, then $f(K)$ is a compact subset of Y.

(c) Given a non-compact Hausdorff space (X, τ) consider the set $X^* = X \cup \{\infty\}$ and the topology \[\tau^* = \tau \cup \{(X \setminus C) \cup \{\infty\} \mid C \subset X \text{ compact}\} \]

Show that (X^*, τ^*) is compact.

[It is not necessary to prove that τ^* is a topology.]

Solution

(a) $K \subset X$ is compact if each cover of K by open subsets of X has a finite subcover.

If X itself is a compact subset then X is a compact space.

[3 marks, bookwork]

(b) Suppose that \mathcal{F} is an open cover for $f(K)$. Let $f^{-1}(\mathcal{F}) = \{f^{-1}(V) \mid V \in \mathcal{F}\}$. Then $f^{-1}(\mathcal{F})$ is an over cover for K since, given $a \in K$, $f(a) \in f(K)$ so that $f(a) \in V$ for some $V \in \mathcal{F}$. Hence $a \in f^{-1}(V)$ for some $V \in \mathcal{F}$.

Now, since K is compact, $f^{-1}(\mathcal{F})$ has a finite subcover for K, $\{f^{-1}(V_1), f^{-1}(V_2), \ldots, f^{-1}(V_n)\}$. Thus, given $b \in f(K)$, $b = f(a)$ for some $a \in K$. Then $a \in f^{-1}(V_i)$ for some i, $1 \leq i \leq n$, so that $b = f(a) \in V_i$. Hence $\{V_1, V_2, \ldots, V_n\}$ is a finite subcover of \mathcal{F} for $f(K)$.

Hence $f(K)$ is compact.

[6 marks, bookwork]

(c) Consider an open cover \mathcal{F} of X^*. In order to contain ∞ it has to include at least one open subset U_∞ of the form $X \setminus C \cup \{\infty\}$ where $C \subset X$ is compact. Now, $\mathcal{F}' = \{U \cap X \mid U \in \mathcal{F}\}$ is an open cover of X (since U and X are open in X^*) and hence of C.

By compactness of C a finite subcover $\{U_1 \cap X, \ldots, U_m \cap X\} \subset \mathcal{F}'$ suffices to cover C. But then one has the finite subcover $\{U_\infty, U_1, \ldots, U_m\} \subset \mathcal{F}$.

[6 marks, exercise set]
B7.

(a) Prove that, if the product \(\sigma_0 \ast \tau_0 \) of two paths \(\sigma_0 \) and \(\tau_0 \) in a topological space \(X \) is defined and the paths \(\sigma_1 \) and \(\tau_1 \) are homotopic to \(\sigma_0 \) and \(\tau_0 \) respectively, then the product \(\sigma_1 \ast \tau_1 \) is defined and is homotopic to \(\sigma_0 \ast \tau_0 \).

(b) Explain how a continuous function \(f: X \to Y \) induces a homomorphism \(f_*: \pi_1(X, x_0) \to \pi_1(X, f(x_0)) \). You should indicate why \(f_* \) is well-defined and why it is a homomorphism.

(c) Prove that, for topological spaces \(X \) and \(Y \) with points \(x_0 \in X, y_0 \in Y \), there is an isomorphism of groups

\[
\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).
\]

Solution

(a) Given homotopic paths \(H: \sigma_0 \sim \sigma_1 \) and \(K: \tau_0 \sim \tau_1 \) such that \(\sigma_0 \ast \tau_0 \) is defined. Then \(1(1) = \sigma_0(1) = \tau_0(0) = \pi_1(0) \) and so the product \(\sigma_1 \ast \tau_1 \) is defined.

Suppose that \(H: \sigma_0 \sim \sigma_1 \) and \(K: \tau_0 \sim \tau_1 \). Then we may define a homotopy \(L: \sigma_0 \ast \tau_0 \sim \sigma_1 \ast \tau_1 \) by

\[
L(s, t) = \begin{cases}
H(2s, t) & \text{for } 0 \leq s \leq 1/2 \text{ and } t \in I, \\
K(2s - 1, t) & \text{for } 1/2 \leq s \leq 1 \text{ and } t \in I.
\end{cases}
\]

This is well defined since, for \(s = 1/2, H(1, t) = x_1 = K(0, t) \). In addition, \(L \) is continuous by the Gluing Lemma since \([0, 1/2] \times I \) and \([1/2, 1] \times I \) are closed subsets of \(I^2 \)

[5 marks, bookwork]

(b) The function \(f_* \) is defined by \(f_*([\sigma]) = [f \circ \sigma] \). It is well-defined since, if \([\sigma_0] = [\sigma_1]\) then \(\sigma_0 \sim \sigma_1 \) and so there exists a homotopy \(H: \sigma_0 \sim \sigma_1 \). Then \(f \circ H: I^2 \to Y \) gives a homotopy \(f \circ \sigma_0 \sim f \circ \sigma_1 \) and so \([f \circ \sigma_0] = [f \circ \sigma_1]\).

To see that \(f_* \) is a homomorphism suppose that \([\sigma], [\tau] \in \pi_1(X, x_0)\). Then

\[
f_*([\sigma][\tau]) = f_*([\sigma \ast \tau]) = [f \circ (\sigma \ast \tau)]
\]

and

\[
f_*([\sigma])f_*([\tau]) = [f \circ \sigma][f \circ \tau] = [(f \circ \sigma) \ast (f \circ \tau)]
\]
and by writing out the formulae we see that \(f \circ (\sigma \ast \tau) = (f \circ \sigma) \ast (f \circ \tau) : I \rightarrow Y \). Hence, \(f_*([\sigma][\tau]) = f_*([\sigma])f_*([\tau]) \).

[5 marks, bookwork]

(c) Let \(p_1 : X \times Y \rightarrow X \) and \(p_2 : X \times Y \rightarrow Y \) be the projection maps. The function

\[
\pi_1(X \times Y, (x_0, y_0)) \rightarrow \pi_1(X, x_0) \times \pi_1(Y, y_0)
\]

given by \(\alpha \mapsto ((p_1)_*(\alpha), (p_2)_*(\alpha)) \) is an isomorphism. To see this we write down the inverse. Given a loop \(\sigma_1 \) in \(X \) based at \(x_0 \) and a loop \(\sigma_2 \) in \(Y \) based at \(y_0 \) then we may define a loop \(\sigma \) in \(X \times Y \) based at \((x_0, y_0) \) by \(\sigma(s) = (\sigma_1(s), \sigma_2(s)) \). Then \(([\sigma_1], [\sigma_2]) \mapsto [\sigma] \) is well-defined and provides the necessary inverse. Hence the given function is an isomorphism of groups.

[5 marks, question set]

[Total: 15 marks]

In part (a) sometimes the reference to the continuity of \(L \) via Gluing Lemma was missing. There was a typo in part (b) it should read \(f_* : \pi_0(X, x_0) \rightarrow \pi_0(Y, f(x_0)) \). This has been corrected during the exam. However, this shouldn’t have prevented anybody from solving this part and most of you probably didn’t even notice it. Only a few people succeeded with part (c).

B8.

(a) Define what is meant by the path-components of a topological space. [You may assume the definition of a path and properties of paths.]

(b) Prove that a continuous map of topological spaces \(f : X \rightarrow Y \) induces a map \(f_* : \pi_0(X) \rightarrow \pi_0(Y) \) between the sets of path-components, taking care to prove that your function is well-defined. Prove that if \(f \) is a homeomorphism then \(f_* \) is a bijection.

(c) A pair of distinct points \(\{p, q\} \) in a path-connected topological space \(X \) is called a cut-pair of type \(n \) when the subspace \(X \setminus \{p, q\} \) has \(n \) path-components. Prove that a homeomorphism \(f : X \rightarrow Y \) induces a bijection between the subsets of cut-pairs of type \(n \) for every \(n \in \mathbb{N} \).

(d) Hence show, using cut-pairs of type 3 or otherwise, that no two of the following subspaces of \(\mathbb{R}^2 \) with the usual topology are homeomorphic.

\[
\begin{align*}
(a) & \quad (b) & \quad (c)
\end{align*}
\]

[15 marks]
Solution

(a) Define an equivalence relation on \(X \) by \(x \sim x' \) if and only if there is a path in \(X \) from \(x \) to \(x' \). Then the path-components of \(X \) are the equivalence classes.

[2 marks, bookwork]

(b) Suppose that \(f : X \to Y \) is a continuous map. Then this induces a function \(f : \pi_0(X) \to \pi_0(Y) \) by \(f([x]) = [f(x)] \). This is well-defined because \([x] = [x'] \) implies that \(x \sim x' \) so that there is a path \(\sigma : [0,1] \to X \) in \(X \) from \(x \) to \(x' \). Then \(f \circ \sigma : [0,1] \to Y \) is a path in \(Y \) from \(f(x) \) to \(f(x') \) and so \([f(x)] = [f(x')] \).

[3 marks, bookwork]

If \(f \) is a homeomorphism then \(f_* \) is a bijection since the inverse \(g = f^{-1} : Y \to X \) induces a function \(g_* : \pi_0(Y) \to \pi_0(X) \) inverse to \(f_* \) since \(g_*(f_*([x])) = [g(f(x))] = [x] \) and \(f_*(g_*([y])) = [y] \).

[2 marks, bookwork]

(c) Suppose that \(f : X \to Y \) is a homeomorphism and \(\{p,q\} \) is a pair of distinct points in \(X \). Then \(f \) induces a homeomorphism \(X \setminus \{p,q\} \to Y \setminus \{f(p),f(q)\} \) and this induces a bijection \(f_* : \pi_0(X \setminus \{p,q\}) \to \pi_0(Y \setminus \{f(p),f(q)\}) \). Hence \(\{p,q\} \) is a cut-pair of type \(n \) in \(X \) if and only if \(\{f(p),f(q)\} \) is a cut-pair of type \(n \) in \(Y \).

[3 marks, exercise set]

(d) In space (i) there are two cut-pairs of type 3 (the intersection points of the line segments and the inner or out circle respectively). In space (ii) there is a unique cut-pair of type 3 (the two points at the ends of the diameter). In space (iii) there are infinitely many cut-pairs of type 3 (picking two arbitrary points on the radial line segments).

[5 marks, new]

[Total: 15 marks]

Part (a) and (b) were generally well done. Sometimes in the definition of \(f_* \) people mixed things up with the induced map on \(\pi_1 \) (instead of \(\pi_0 \)) which is also denoted by \(f_* \). In (c) people sometimes argued that there is a bijection between path-components of \(X \) and \(Y \), but one needs this statement for \(X \setminus \{p,q\} \) and \(X \setminus \{f(p),f(q)\} \). For this it is not enough that the restriction of \(f \) is a (continuous) bijection but one really needs that it is a homeomorphism. For part (d) almost everyone used the correct approach but sometimes people didn’t correctly identify cut pairs.