1 Topological Equivalence and Path-Connectedness

1.1 Definition. Suppose that X and Y are subsets of Euclidean spaces. A function $f: X \to Y$ is a topological equivalence or a homeomorphism if it is a continuous bijection such that the inverse $f^{-1}: Y \to X$ is also continuous. If such a homeomorphism exists then X and Y are topologically equivalent or homeomorphic, written $X \cong Y$.

1.2 Example. (a) The real line \mathbb{R} and the open half line $(0, \infty) = \{ x \in \mathbb{R} \mid x > 0 \}$ are homeomorphic. A homeomorphism is given by $\exp: \mathbb{R} \to (0, \infty)$ with inverse $\log: (0, \infty) \to \mathbb{R}$.

(b) $X = \mathbb{R}^2 \setminus \{0\}$, the punctured plane, and $Y = \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1 \}$, the infinite cylinder, are homeomorphic. A homeomorphism $f: X \to Y$ is given by

$$f(x_1, x_2) = \left(\frac{x_1}{|x|}, \frac{x_2}{|x|}, \log_e(|x|)\right)$$

with inverse $g: Y \to X$ given by

$$g(y_1, y_2, y_3) = e^{y_3}(y_1, y_2).$$

1.3 Exercise. (a) The punctured plane, $X = \mathbb{R}^2 \setminus \{0\}$, is homeomorphic to the complement of the unit disc, $Z = \{ x \in \mathbb{R}^2 \mid |x| > 1 \} = \mathbb{R}^2 \setminus D^2$ where $D^2 = \{ x \in \mathbb{R}^2 \mid |x| \leq 1 \}$.

(b) $S^1 = \{ x \in \mathbb{R}^2 \mid |x| = 1 \}$, the unit circle, and $T = \{ x = (x_1, x_2) \in \mathbb{R}^2 \mid |x_1| + |x_2| = 1 \}$, the diagonal square, are homeomorphic.

1.4 Problem. We prove that two subsets are homeomorphic by writing down a homeomorphism. How can we prove that two subsets are not homeomorphic?

1.5 Definition. A property P of subsets of Euclidean spaces is a topological property when, if X and Y are homeomorphic subsets, then X has property P if and only if Y has property P.

Thus, if X has property P and Y does not have property P then X and Y are not homeomorphic.
Path-connected subsets of Euclidean space

1.6 Definition. (a) Let \(X \) be a subset of some Euclidean space. A path in \(X \) is a continuous function \(\sigma: [0, 1] \rightarrow X \) where \([0, 1] = \{ t \in \mathbb{R} | 0 \leq t \leq 1 \} \). The point \(\sigma(0) \) is the beginning point of the path and the point \(\sigma(1) \) is the terminal point of the path. We say that \(\sigma \) is a path in \(X \) from \(\sigma(0) \) to \(\sigma(1) \).

(b) The subset \(X \) is said to be path-connected if, for each pair of points \(x, x' \in X \), there is a path in \(X \) from \(x \) to \(x' \).

1.7 Proposition. The closed unit ball (or disc) \(D^n = \{ x \in \mathbb{R}^n | |x| \leq 1 \} \) in \(\mathbb{R}^n \) is path-connected.

Proof. Given \(x, x' \in D^n \) define \(\sigma: [0, 1] \rightarrow \mathbb{R}^n \) by
\[
\sigma(s) = x + s(x' - x) = (1 - s)x + sx'
\]
for \(s \in [0, 1] \). Then \(\sigma \) is continuous, \(\sigma(0) = x \) and \(\sigma(1) = x' \) so \(\sigma \) is a path in \(\mathbb{R}^n \) from \(x \) to \(x' \).

However, for \(0 \leq s \leq 1 \), \(|\sigma(s)| = |(1 - s)x + sx'| \leq |(1 - s)x| + |sx'| \) (by the triangle inequality) = \((1 - s)|x| + s|x'| \) (since \(s \geq 0 \) and \(1 - s \geq 0 \)) \leq (1 - s) + s (since \(x, x' \in D^n \)) = 1, i.e. \(|\sigma(s)| \leq 1 \). Hence \(\sigma(s) \in D^n \) and so \(\sigma: [0, 1] \rightarrow D^n \) is a path in \(D^n \) from \(x \) to \(x' \).

Hence \(D^n \) is path-connected. \(\square \)

1.8 Exercise. The unit circle \(S^1 \) in \(\mathbb{R}^2 \) is path-connected.

1.9 Theorem. Let \(f: X \rightarrow Y \) be a continuous surjection where \(X \) and \(Y \) are subsets of Euclidean spaces. Then, if \(X \) is path-connected, so is \(Y \).

Proof. Exercise. \(\square \)

1.10 Corollary. Path-connectedness is a topological property.

Proof. Suppose that \(X \) and \(Y \) are homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism \(f: X \rightarrow Y \). Then if \(X \) is path-connected so is \(Y \) by the Theorem since \(f \) is a continuous surjection. Conversely, if \(Y \) is path-connected then so is \(X \) since \(f^{-1}: Y \rightarrow X \) is a continuous surjection. Thus, \(X \) is path-connected if and only if \(Y \) is path-connected as required. \(\square \)

1.11 Proposition. The subset \(\mathbb{R} \setminus \{0\} \) is not path-connected and so \(\mathbb{R} \setminus \{0\} \not\sim S^1 \).
Proof. This is true because there is no path in $\mathbb{R} \setminus \{0\}$ from -1 to 1. This may be proved by contradiction. Suppose, for contradiction, that $\sigma: [0, 1] \to \mathbb{R} \setminus \{0\}$ is a path from -1 to 1 so that $\sigma(0) = -1$ and $\sigma(1) = 1$. Then $i \circ \sigma: [0, 1] \to \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is a continuous function with values -1 and 1 for which 0 is not a value. This contradicts the intermediate value property of the function σ (Theorem 0.23(b) in the Background Material) since $-1 < 0 < 1$ and so gives the necessary contradiction. Hence σ cannot exist, as required and so $\mathbb{R} \setminus \{0\} \not\sim S^1$ since S^1 is path-connected and path-connectedness is a topological property.

1.12 Problem. Are S^1 and $[0, 1)$ homeomorphic? There is a continuous bijection $f: [0, 1) \to S^1$ defined by $f(x) = (\cos 2\pi x, \sin 2\pi x)$. More generally, is S^1 homeomorphic to any subset of \mathbb{R}?
Path-components

1.13 Definition. Suppose that X is a subset of a Euclidean space.

(a) Given $x \in X$, we may define a path $\varepsilon_x : [0, 1] \to X$ by
$$\varepsilon_x(s) = x \text{ for } 0 \leq s \leq 1.$$
This is called the constant path at x.

(b) Given a path $\sigma : [0, 1] \to X$ in X we may define a path
$$\bar{\sigma}(s) = \sigma(1 - s) \text{ for } 0 \leq s \leq 1.$$
This is called the reverse path of σ and is a path from $\sigma(1)$ to $\sigma(0)$.

(c) Given paths $\sigma_1 : [0, 1] \to X$ and $\sigma_2 : [0, 1] \to X$ in X such that $\sigma_1(1) = \sigma_2(0)$ we may define a path $\sigma_1 * \sigma_2 : [0, 1] \to X$ by
$$\sigma_1 * \sigma_2(s) = \begin{cases} \sigma_1(2s) & \text{for } 0 \leq s \leq 1/2, \\ \sigma_2(2s - 1) & \text{for } 1/2 \leq s \leq 1. \end{cases}$$
This is called the product of the paths σ_1 and σ_2 and is a path from $\sigma_1(0)$ to $\sigma_2(1)$.

[Note that $\sigma_1 * \sigma_2$ is well-defined and continuous at $t = 1/2$ by the conditions on σ_1 and σ_2.]

1.14 Proposition. Given X, a subset of a Euclidean space, we may define an equivalence relation on X as follows: for $x, x' \in X$, $x \sim x'$ if and only if there is a path in X from x to x'.

Proof. We check the conditions for an equivalence relation (Definition 0.15).

The reflexive property. For each point $x \in X$, $x \sim x$ using the constant path ε_x.

The symmetric property. Suppose that x and $x' \in X$ such that $x \sim x'$. Then there is a path σ in X from x to x'. The reverse path $\bar{\sigma}$ is then a path in X from x' to x and so $x' \sim x$ as required.

The transitive property. Suppose that x, x' and $x'' \in X$ such that $x \sim x'$ and $x' \sim x''$. This means that there is a paths σ_1 in X from x to x' and a path σ_2 in X from x' to x''. Then the product path $\sigma_1 * \sigma_2$ is a path in X from x to x'' and so $x \sim x''$ as required. \qed
1.15 Definition. Given X, a subset of a Euclidean space, the equivalence classes of the equivalence relation in Proposition 1.14 are called the path-components of X. We write $\pi_0(X)$ for the set of path-components of X and $[x]$ for the path-component of a point $x \in X$.

1.16 Example. $\pi_0(\mathbb{R} \setminus \{0\}) = \{(-\infty, 0), (0, \infty)\}$.

1.17 Proposition. Homeomorphic sets have the same number of path-components.

Proof. Suppose that X and Y are homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism $f : X \to Y$. It will be shown that this continuous function induces a bijection $f_* : \pi_0(X) \to \pi_0(Y)$ by $f_*([x]) = [f(x)]$. This implies that $\pi_0(X)$ and $\pi_0(Y)$ have the same cardinality which is what we have proved.

The function f_* is well-defined because, if $[x] = [x']$ then $x \sim x'$ and so there is a path $\sigma : [0, 1] \to X$ in X from x to x'. It follows that $f \circ \sigma : [0, 1] \to Y$ is a path in Y from $f(x)$ to $f(x')$ and so $f(x) \sim f(x')$, i.e. $[f(x)] = [f(x')]$.

The function f_* is a bijection since it is easily checked that $(f^{-1})_* : \pi_0(Y) \to \pi_0(X)$, the function induced by the inverse $f^{-1} : Y \to X$, is an inverse for f_* (Exercise). □

Cut-points in subsets of Euclidean space

1.18 Definition. Suppose that X is a subset of some Euclidean space. Then a point $p \in X$ is called a cut-point of type n of X or an n-point of X if its complement $X \setminus \{p\}$ has n path-components.

1.19 Example. (a) In $[0, 1)$ each $x \in (0, 1)$ is a 2-point and 0 is a 1-point.

(b) In the subset of \mathbb{R}^2 given by the coordinate axes, $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 = 0 \text{ or } x_2 = 0\}$, $(0, 0)$ is a 4-point whereas all other points are 2-points.

(c) In S^1 every point is a 1-point.

1.20 Theorem. Homeomorphic sets have the same number of cut-points of each type.

Proof. Let X and Y be homeomorphic subsets of Euclidean spaces. Then there is a homeomorphism $f : X \to Y$. Suppose that $p \in X$ is an n-point of X. Then f induces a homeomorphism $X \setminus \{p\} \to Y \setminus \{f(p)\}$ and so these
subsets have the same number of path-components by Proposition 1.17. Hence \(f(p) \) is an \(n \)-point of \(Y \).

This shows that \(f \) induces a bijection between the \(n \)-points of \(X \) and the \(n \)-points of \(Y \) and so they must have the same number of \(n \)-points.

1.21 Example. \([0,1)\) and \(S^1 \) are not homeomorphic since \([0,1)\) has some 2-points (all of its points apart from 0) whereas \(S^1 \) has none.

Other applications of path-connectness

1.22 Theorem (The Brouwer Fixed Point Theorem in dimension 1). Suppose that \(f: [-1,1] \to [-1,1] \) is a continuous map. Then \(f \) has a fixed point, i.e. there exists a point \(t \in [-1,1] \) such that \(f(t) = t \).

Proof. Suppose for contradiction that \(f \) does not have a fixed point. Then \(f(t) \neq t \) for all \(t \in [-1,1] \). Thus we may define a function \(g: [-1,1] \to \{-1,1\} \) by \(g(t) = (f(t) - t)/|f(t) - t| \). This is a continuous function from basic real analysis. However, since \(f(-1) > -1 \) and \(f(1) < 1 \) it follows that \(g(-1) = 1 \) and \(g(1) = -1 \). Hence \(g \) is a surjection. Hence, by Proposition 1.9, \(\{-1,1\} \) path-connected which contradicts the Intermediate Value Theorem (as in the proof of Proposition 1.11). Hence \(f \) has a fixed point.

1.23 Theorem (The Borsuk-Ulam Theorem in dimension 1). Suppose that \(f: S^1 \to \mathbb{R} \) is a continuous function. Then there is a point \(x \in S^1 \) such that \(f(x) = f(-x) \).

Proof. Exercise. Try a similar proof to that of Theorem 1.22.

1.24 Definition. A subset \(A \subset \mathbb{R}^n \) is **bounded** if there is a real number \(R \) such that \(x \in A \implies |x| \leq R \).

1.24 Theorem (The Pancake Theorem). Let \(A \) and \(B \) be bounded subsets of \(\mathbb{R}^2 \). Then there is a (straight) line in \(\mathbb{R}^2 \) which divides each of \(A \) and \(B \) in half by area.

Remark. The statement of this result assumes that \(A \) and \(B \) each have a well-defined area. In this course we ignore the technical difficulties associated with defining the area of a subset of \(\mathbb{R}^2 \) (the subject of integration and measure theory).

Outline Proof. Since \(A \) and \(B \) are bounded there is a real number \(R \) such that \(a \in A \Rightarrow |a| \leq R \) and \(x \in B \Rightarrow |x| \leq R \).
Suppose that \(x \in S^1 \). For \(t \in [-R, R] \) let \(L_{xt} \) denote the straight line through \(tx \) perpendicular to \(x \). Let \(v(t) \in [0, 1] \) be the proportion of the area of \(A \) on the same side of \(L_{xt} \) as \(R \). Then \(v: [-R, R] \to [0, 1] \) is a continuous decreasing function with \(v(-R) = 1 \) and \(v(R) = 0 \). By the Intermediate Value Theorem there exists \(t \in [-R, R] \) such that \(v(t) = 1/2 \). This \(t \) may not be unique but it is not difficult to show that \(v^{-1}(1/2) = \{ t \mid v(t) = 1/2 \} = [\alpha, \beta] \), a closed interval. Let \(f_A(x) = (\alpha + \beta)/2 \). Then the line \(L_{x,f_A(x)} \) bisects \(A \).

The function \(f_A: S^1 \to \mathbb{R} \) can be shown to be continuous. Furthermore \(f_A(-x) = -f_A(x) \) (since \(L_{x,f_A(x)} \) and \(L_{x,f_A(-x)} \) are the same line so that \(f_A(x)x = f_A(-x)(-x) \)).

Similarly, using the region \(B \), we may define a continuous function \(f_B: S^1 \to \mathbb{R} \) such that \(f_B(-x) = -f_B(x) \) and \(L_{x,f_B(x)} \) bisects \(B \).

Let the continuous function \(f: S^1 \to \mathbb{R} \) be given by \(f(x) = f_A(x) - f_B(x) \).

By the Borsuk-Ulam Theorem, there exists \(x_0 \in S^1 \) such that \(f(x_0) = f(-x_0) \). But \(f(-x_0) = f_A(-x_0) - f_B(-x_0) = -f_A(x_0) + f_B(x_0) = -f(x_0) \). Hence \(f(x_0) = -f(x_0) \) so that \(f(x_0) = 0 \). This means that \(f_A(x_0) - f_B(x_0) = 0 \) so that \(f_A(x_0) = f_B(x_0) \).

From the definition of \(f_A \) and \(f_B \) it follows that the line \(L_{x_0,f_A(x_0)} = L_{x_0,f_B(x_0)} \) bisects both of \(A \) and \(B \) and so is the line whose existence is the claim of the theorem. \(\square \)