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MATH41071/MATH61071 Algebraic topology

§1. Topological Surfaces

1.1 Definition. Let n be a non-negative integer. An n-dimensional (topo-
logical) manifold (or a (topological) n-manifold is a topological spaceX which

(i) is Hausdorff,

(ii) is second countable (i.e. has a countable basis), and

(iii) is locally Euclidean, i.e. each point x ∈ X lies in an open subset V in
X which is homeomorphic to an open subset U ⊂ Rn (with the usual
topology).

A homeomorphism φ : U → V where U is an open subset of Rn and V is an
open subset of X is called a chart or a parametrisation of the open set V .
The inverse φ−1 : V → U is called a coordinate system on V .

A collection of charts {φλ : Uλ → Vλ | λ ∈ Λ } is called an atlas on X
when each point of X lies in some open set Vλ.

A topological 1-manifold is called a topological curve.

A topological 2-manifold is called a topological surface.

1.2 Remarks. The Hausdorff condition ensures that there are enough
open sets and the second countable condition ensures that there are not too
many. These conditions are required for technical reasons. There are some
examples on Problems 1 of locally Euclidean spaces which do not satisfy
these conditions.

1.3 Examples. (a) Any open subset V of Rn (including Rn itself) is a
topological n-manifold with a single chart idV : V → V .

(b) The 2-sphere S2 = {x ∈ R3 | |x| = 1 } is a topological surface.

To see this let V +
3 = {x = (x1, x2, x3) ∈ S2 | x3 > 0 } (the open northern

hemisphere). This set may be parametrised by the chart φ+3 : B1(0) = {u ∈
R2 | |u| < 1 } → V +

3 defined by

φ+3 (u1, u2) = (u1, u2,+
√

1− |u|2).

This is continuous because the component functions are continuous and it
is a homeomorphism since it has continuous inverse given by (u1, u2, u3) 7→
(u1, u2). So it gives a chart on S2 around points in the open northern
hemisphere.
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Similarly we may define a chart φ−3 : B1(0) → V −3 = {x ∈ S2 | x3 < 0 }
given by u 7→ (u,−

√
1− |u|2) around points in the open southern hemi-

sphere.

In the same way we may define two charts

φ±1 : B1(0)→ {x ∈ S2 | ±x1 > 0 }

by u 7→ (±
√

1− |u|2,u) and two charts

φ±2 : B1(0)→ {x ∈ S2 | ±x2 > 0 }

by u 7→ (u1,±
√

1− |u|2, u2).
These six charts provide an atlas for S2 because each point of S2 has at

least one non-zero coordinate and so lies in at least one of the open subsets
V ±i .

(c) More generally, Sn = {x ∈ Rn+1 | |x| = 1 } is a topological n-manifold
and has an atlas with 2(n+1) charts generalizing the method of the previous
example.

1.4 Proposition. If M1 is a topological n1-manifold and M2 is a topolog-
ical n1-manifold then the product space M1×M2 is a topological (n1 +n2)-
manifold.

Proof. Use products of charts (exercise). �

1.5 Examples. The cylinder S1 × (0, 1) and the torus S1 × S1 are topo-
logical surfaces.

The projective plane

1.6 Definition. Define an equivalence relation on S2 by x ∼ ±x for all
x ∈ S2. Then each equivalence class [x] = {x,−x} is a pair of antipodal
points on S2. We define the projective plane P 2 to be the set of equivalence
classes S2/∼ with the quotient topology.

1.7 Proposition. The projective plane P 2 is a topological surface.

Proof. We can provide an atlas of three charts based on the atlas for S2

given above as follows.

Let φ3 : B1(0) → P 2 be given by φ3(u) = [φ+3 (u)] = [u,
√

1− |u|2]
(using the notation of Example 1.3(b)). Then φ3 gives a continuous bijection
B1(0)→ V3 = { [x] ∈ P 2 | x3 6= 0 } since, given [x] ∈ V3, then [(x1, x2, x3)] =
[(−x1,−x2,−x3)] and precisely one of x3 and −x3 is positive. V3 is open
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in P 2 since q−1(V3) = V +
3 ∪ V

−
3 ⊂ S2. φ−13 is continuous since, if U is an

open subset of B1(0), then φ3(U) is open in P 2 (and so in V3 since V3 is
open in P 2) since q−1φ3(U) = φ+3 (U)∪φ−3 (−U) which is open in S2. Hence
φ3 : B2

1(0)→ V3 is a chart on P 2.

Similarly, we may define charts

φ1 : B1(0)→ V1 = { [x] ∈ P 2 | x1 6= 0 }, φ1(u) = [φ+1 (u)] = [(
√

1− |u|2,u)],

φ2 : B1(0)→ V1 = { [x] ∈ P 2 | x2 6= 0 }, φ1(u) = [φ+2 (u)] = [(u1,
√

1− |u|2, u2)].

These three charts cover P 2 since V1∪V2∪V3 = P 2. Hence P 2 is locally
Euclidean.

To see that P 2 is Hausdorff suppose that [x], [y] are two distinct points
of R2. Let ε = 1

2 · min(|x − y|, |x + y|). Then the four open sets BS2

ε (x),

BS2

ε (−x), BS2

ε (y), BS2

ε (−y) are disjoint and so q
(
BS2

ε (x)
)

and q
(
BS2

ε (y)
)

are the required disjoint open sets in P 2 containing [x] and [y].

Finally P 2 is second countable by the following result. �

1.8 Proposition. A compact space which is locally Euclidean is second
countable.

Proof. Exercise. Observe that a compact locally Euclidean space has a
finite atlas. �

1.9 Remark. In the same say we may define projective n-space Pn =
Sn/(x ∼ ±x) and this is a topological n-manifold.

The connected sum of two surfaces

1.10 Remark. The surfaces S2, S1×S1 and P 2 are basic in the sense that
any non-empty compact surface may be obtained from them by a process
known as connected sum. Roughly speaking, the connected sum of two
surfaces S1 and S2 is formed by removing open discs from each and then
gluing them together along the boundary circles of the resulting holes. We
first need to observe that we can find such discs.

1.11 Proposition. Given a topological surface S it has an atlas consisting
of charts of the form φ : B1(0)→ V ⊂ S.

Proof. Exercise. �
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1.12 Definition. Suppose that S1 and S2 are non-empty path-connected
topological surfaces. Choose subspaces V1 ⊂ S1 and V2 ⊂ S2 which are
homeomorphic to the open disc B1(0) ⊂ R2 by homeomorphisms

φi : B1(0)→ Vi for i = 1 and i = 2

(which we can do by Proposition 1.11).

We remove the interiors of smaller discs, i.e. φi
(
B2

1/2(0)
)

and glue along
the boundary circles. More precisely, we define the quotient space of the
disjoint union

S =
[(
S1 − φ1

(
B2

1/2(0)
))
t
(
S2 − φ2

(
B2

1/2(0)
))]/

∼

where φ1(u) ∼ φ2(u) for u ∈ B2
1(0) with |u| = 1/2.

We call S the connected sum of S1 and S2 and write this as S1#S2.

1.13 Theorem. The connected sum S1#S2 of two path-connected sur-
faces S1 and S2 is well-defined up to homeomorphism and does not depend
on the choice of charts φi : B1(0)→ Vi.

Proof. This is rather technical and is omitted. For compact surfaces this is
in fact a consequence of the classification theorem (Theorem 1.15 below).�

1.14 Theorem. The connected sum S1#S2 of two path-connected topo-
logical surfaces, S1 and S2, is a path-connected topological surface.

Proof. First of all notice that the open subspace

U =
[(
V1 − φ1

(
B2

1/2(0)
))
t
(
V2 − φ2

(
B2

1/2(0)
))]/

∼

of S1#S2 is homeomorphic to the topological surface (0, 1)×S1 via a home-
omorphism given by f : (0, 1)× S1 → U given by

f(t,x) =

{ [
φ1
(
(1− t)x

)]
, for 0 < t 6 1/2,

[φ2(tx)] , for 1/2 6 t < 1.

[This function and its inverse are continuous by the Gluing Lemma.]

Furthermore the two open sets in S1#S2 given by the homeomorphic
images of

U1 = S1 \ φ1({u ∈ R2 | |u| 6 1/2 }),

U2 = S2 \ φ2({u ∈ R2 | |u| 6 1/2 })

are also topological surfaces.

Now each point of S1#S2 lies in one or more of these three open subsets
and so since they are each topological surfaces it has on open neighbourhood
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in the open subset and so in S1#S2 which is homeomorphic to an open subset
of R2 as required to prove that S1#S2 is locally Euclidean.

If S1 and S2 are compact then so is S1#S2 which is therefore second
countable by Proposition 1.8. The proof of second countability in the general
case is omitted.

We can see that S1#S2 is Hausdorff by considering various possibilities.
The details are omitted.

S1#S2 is path-connected since there is a path between every point and
[φ1(u)] = [φ2(u)] for any point u ∈ R2 with |u| = /1/2. �

The classification theorem for compact surfaces

1.15 Theorem [Classification Theorem for Closed Surfaces]. Every
path-connected compact topological surface (or closed surface) is homeomor-
phic to one and only one of:

(a) S2,

(b) Tg for some g > 1 (where T1 = S1 × S1 and Tg+1 = Tg#T1 for g > 1),

(c) Pg for some g > 1 (where P1 = P 2 and Pg+1 = Pg#P1 for g > 1).

The number g is called the genus of the surface.

The course is structured around the proof of this theorem. §2 is con-
cerned with the proof that every path-connected compact topological surface
is homeomorphic to a surface on the list and the remainder of the course
deal with the topological invariants needed to show that the surfaces on the
list are all topologically distinct.

Cut and paste arguments

1.16 Remarks. In this course we shall often be rather informal in con-
structing topological spaces and homeomorphisms. Continuing to do this in
full detail would become extremely tedious. So what follows are a number
of results illustrating these more informal arguments.

1.17 Proposition. For any path-connected topological surface S, S#S2

is homeomorphic to S.

Outline proof. If an open disc is removed from S2 then what is left is a
closed disc. Thus S#S2 is formed by removing the interior of a closed disc
from S and then attaching a closed disc by the boundary circle which takes
us back to S. �
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1.18 Proposition. For any path-connected topological surface S, S#T1
can be thought of as S with a handle, i.e. we remove the interiors of two
closed discs in S and then attach a closed cylinder (S1 × I) by the two
boundary circles.

Outline proof. We may picture the connected sum of a surface S with the
torus as the following identification space where the two boundary boundary
circles to be identified are labelled a.

S

torusa a

Now the torus may be obtained by gluing together two closed cylinders and
so thinking of the torus in this way we can the connected sum of the surface
S and the torus and following identification space where the three pairs of
boundary circles to by identified are labelled a, b and c.

S

trousers space handlea a

b b

c c

Here the middle space, which is obtained by removing an open disc, from
the closed cylinder is sometimes called ‘the trousers space’ for fairly obvious
reasons (a is the waist and b and c are the cuffs). It is homeomorphic
the a closed disc with two open discs removed as follows (the cylinder is
homeomorphic to an annulus and this is an annulus with an additional open
disc removed).
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a

c

b

Now replacing the trousers space by the disc with two holes and then doing
the identification a gives rise the following identification space.

S

handlea

c

b

b

c

This gives S with a handle attached. �

1.19 Definition. Let I = [0, 1] with the usual topology. Then the Möbius
band is the identification space I2/∼ where (s, 0) ∼ (1− s, 1). The image of
the subset {0, 1} × I in the Möbius band is called the boundary of the band
and is homeomorphic to the circle S1.

1.20 Proposition. The identification space obtained by gluing together
a Möbius band and a closed disc by their boundary circles is homeomorphic
to the projective plane.

Proof. Exercise. Recall that the projective plane is homeomorphic the
identification space D2/∼ where x ∼ x′ ∈ D2 if and only if x = x′ or x′ =
−x ∈ S1 ⊂ D2 (see MATH31051/41051/61051 Problems 4, Question 8). �

1.21 Proposition. For any path-connected topological surface S, S#P1

can be thought of S with a cross-cap, i.e. we remove the interior of a closed
disc in S and then attach a Möbius band by the boundary circles.

Outline proof. This follows by a similar argument to Proposition 1.18
using Proposition 1.20. �
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1.22 Remarks. (a) It is a consequence of Propositions 1.18 and 1.21 that
the Classification Theorem 1.15 may be interpreted as saying that every
path-connected topological surface is homeomorphic to a sphere with g han-
dles attached or a sphere with g cross-caps.

(b) It is not clear from this what surface is obtained if both a handle and a
cross-cap are attached to a sphere. An equivalent question is to ask where
the surface T1#P1 is in the Classification Theorem.
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