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2000 Mathematics Subject Classification. 14C20, 14M25, 14J26.

1



2

Abstract. We investigate the Cox ring of a

normal complete variety X with algebraic torus

action. Our first results relate the Cox ring of

X to that of a maximal geometric quotient of

X . As a consequence, we obtain a complete

description of the Cox ring in terms of gen-

erators and relations for varieties with torus

action of complexity one. Moreover, we pro-

vide a combinatorial approach to the Cox ring

using the language of polyhedral divisors. Ap-

plied to smooth K∗-surfaces, our results give

a description of the Cox ring in terms of Orlik-

Wagreich graphs. As examples, we explic-

itly compute the Cox rings of all Gorenstein

del Pezzo K∗-surfaces with Picard number at

most two and the Cox rings of projectiviza-

tions of rank two vector bundles as well as

cotangent bundles over toric varieties in terms

of Klyachko’s description.

1. Introduction

Let X be a normal complete algebraic variety de-

fined over some algebraically closed field K of charac-

teristic zero and suppose that the divisor class group
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Cl(X ) is finitely generated. The Cox ring of X is the

graded K-algebra

R(X ) =

⊕

Cl(X )

Γ(X,OX (D)),

see Section 2 for a detailed reminder. A basic prob-

lem is to present R(X ) in terms of generators and

relations. Besides the applications in number the-

ory, see e.g. [9], the knowledge of generators and re-

lations also opens a combinatorial approach to geo-

metric properties of X , see [6] and [11].

In the present paper, we investigate the case that

X comes with an effective algebraic torus action T ×

X → X . Our first result relates the Cox ring of X to

that of a maximal orbit space of the T -action. For a

point x ∈ X , denote by Tx ⊆ T its isotropy group and

consider the non-empty T -invariant open subset

X0 := {x ∈ X ; dim(Tx ) = 0} ⊆ X.

There is a geometric quotient q : X0 → X0/T with an

irreducible normal but possibly non-separated orbit

space X0/T , see [22], and also for X0/T one can de-

fine a Cox ring. Denote by E1, . . . , Em ⊆ X the (T -

invariant) prime divisors supported in X \ X0 and by

D1, . . . , Dn ⊆ X those T -invariant prime divisors who
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have a finite generic isotropy group of order lj > 1.

Moreover, let 1Ek and 1Dj denote the canonical sec-

tions of the divisors Ek and Dj respectively, and let

1q(Dj) ∈ R(X0/T ) be the canonical section of q(Dj).

Theorem 1.1. There is a graded injection q∗ : R(X0/T )→
R(X ) of Cox rings and the assignments Sk 7→ 1Ek and

Tj 7→ 1Dj induce an isomorphism ofCl(X )-graded rings

R(X ) �
R(X0/T )[S1, . . . , Sm , T1, . . . , Tn]

〈T
lj
j − 1q(Dj); 1 ≤ j ≤ n〉

,

where Cl(X )-grading on the right hand side is defined
by associating to Sk the class of Ek and to Tj the class

of Dj. In particular, R(X ) is finitely generated if and
only if R(X0/T ) is so.

If the dimension of T equals that of X , then our X

is a toric variety, the subset X0 ⊆ X is the open T -

orbit, the divisors E1, . . . , Em are the invariant prime

divisors of X and there are no divisors Dj. Thus, for

toric varieties, the above Theorem shows that the Cox

ring is the polynomial ring in the canonical sections

of the invariant prime divisors and hence gives the

result obtained by D. Cox in [7].
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The Cox ring R(X ) can be further evaluated by us-

ing the fact that X0/T admits a separation, i.e., a

rational map π : X0/T d Y to a variety Y , which is

a local isomorphism in codimension one. After suit-

ably shrinking, we may assume that there are prime

divisors C0, . . . , Cr on Y such that each inverse im-

age π−1(Ci) is a disjoint union of prime divisors Cij,

where 1 ≤ j ≤ ni , the map π is an isomorphism over

Y \ (C0 ∪ . . . ∪ Cr ) and all the Dj occur among the

Dij := q−1(Cij). Let lij ∈ Z≥1 denote the order of the

generic isotropy group of Dij.

Theorem 1.2. There is a graded injection R(Y ) →
R(X ) of Cox rings and the assignments Sk 7→ 1Ek and

Tij 7→ 1q−1(Dij) induce an isomorphism of Cl(X )-graded
rings

R(X ) �
R(Y )[S1, . . . , Sm , Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈T lii − 1Ci ; 0 ≤ i ≤ r〉
.

where T lii := T li1i1 · · · T
lini
ini , and the Cl(X )-grading on the

right hand side is defined by associating to Sk the

class of Ek and to Tij the class of Dij. In particular,

R(X ) is finitely generated if and only if R(Y ) is so.
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Now suppose that the T -action on X is of com-

plexity one, i.e., its biggest T -orbits are of codimen-

sion one in X . Then X0/T is of dimension one and

has a separation π : X0/T → P1. Choose r ≥ 1 and

a0, . . . , ar ∈ P1 such that π is an isomorphism over

P1 \ {a0, . . . , ar } and all the divisors Dj occur among

the Dij := q−1(yij), where π−1(ai) = {yi1, . . . , yini }. Let

lij ∈ Z≥1 denote the order of the generic isotropy group

of Dij. For every 0 ≤ i ≤ r, define a monomial

fi := T li1i1 · · · T
lini
ini ∈ K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ].

Moreover, write ai = [bi , ci ] with bi , ci ∈ K and for

every 0 ≤ i ≤ r − 2 set k = j + 1 = i + 2 and define a

trinomial

gi := (ckbj − cjbk)fi + (cibk − ckbi)fj + (cjbi − cibj)fk.

Theorem 1.3. Let X be a normal complete varietywith

finitely generated divisor class group and an effective

algebraic torus action T × X → X of complexity one.

Then, in terms of the data defined above, the Cox ring

of X is given as

R(X ) �
K[S1, . . . , Sm , Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈gi ; 0 ≤ i ≤ r − 2〉
,
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where 1Ek corresponds to Sk , and 1Dij to Tij, and the

Cl(X )-grading on the right hand side is defined by as-
sociating to Sk the class of Ek and to Tij the class of

Dij. In particular, R(X ) is finitely generated.

Note that finite generation of the Cox ring for a

complexity one torus action with X0/T rational may

as well be deduced from [15].

In Section 4, we combine the results just presented

with the description of torus actions in terms of poly-

hedral divisors given in [2] and [3] and that way ob-

tain a combinatorial approach to the Cox ring, see

Theorem 4.8. Similarly to the toric case [7], the ad-

vantage of the combinatorial treatment is that the

divisor class group is easily accessible via the defin-

ing data and thus one has a simple approach to the

grading of the Cox ring.

In Section 5, we give some applications. The de-

scription of the Cox ring given in Theorem 1.3 allows

us to apply the language of bunched rings presented

in [6] and [11] in order to investigate complete nor-

mal rational varieties X with a complexity one torus

action. For example, in Corollary 5.2, we realize X as

an invariant complete intersection in a toric variety
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X ′, provided that any two points of X admit a com-

mon affine neighborhood. Moreover, in Corollary 5.3,

we obtain explicit descriptions of the cone of movable

divisor classes and the canonical divisor in terms of

the divisors Ek and Dij.

The first non-trivial examples of complexity one

torus actions are complete normal rationalK∗-surfaces

X . An important data is the Orlik-Wagreich graph as-

sociated to X , which describes the intersection theory

of a canonical resolution X̃ of X , see [17]. In Theo-

rem 5.4, we show how to extract the Cox ring of X̃

from the Orlik-Wagreich graph, which in turn allows

to compute the Cox ring of X . In Theorem 5.6, we

explicitly compute the Cox rings of all Gorenstein del

Pezzo surfaces of Picard number at most two.

Finally, we consider in Section 5 projectivizations

of equivariant vector bundles over complete toric vari-

eties. We explicitly compute the Cox ring for the case

of rank two bundles and for the case of the cotangent

bundle over a smooth toric variety, see Theorems 5.7

and 5.9.

We would like to thank the referee for carefully

reading the manuscript and for many helpful remarks

and corrections.
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2. Cox rings and universal torsors

Here we provide basic ingrediences for the proofs

of Theorems 1.1 to 1.3, which also might be of inde-

pendent interest. For example, in Proposition 2.3 we

determine the Cox ring of a prevariety X in terms of

that of a separation X → Y and Proposition 2.6 is

a lifting statement for torus actions to the universal

torsor in the case of torsion in the class group.

We work over an algebraically closed field K of

characteristic zero. We will not only deal with va-

rieties over K but more generally with prevarieties,

i.e., possibly non-separated spaces. Recall that a (K-

)prevariety is a space X with a sheaf OX of K-valued

functions such that X = X1 ∪ . . .∪Xr holds with open

subspaces Xi , each of which is an affine (K-)variety.

In the sequel, X denotes an irreducible normal pre-

variety. As in the separated case, the group of Weil

divisors is the free abelian group WDiv(X ) generated

by all prime divisors, i.e., irreducible subvarieties of

codimension one. The divisor class group Cl(X ) is

the factor group of WDiv(X ) modulo the subgroup of

principal divisors. We define the Cox ring of X fol-

lowing [11, Sec. 2]. Suppose that Γ(X,O∗) = K∗ holds
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and that the divisor class group Cl(X ) is finitely gen-

erated. Let D ⊆WDiv(X ) be a finitely generated sub-

group mapping onto Cl(X ) and consider the sheaf of

D-graded algebras

S :=
⊕

D∈D

SD, SD := OX (D),

where multiplication is defined via multiplying ho-

mogeneous sections as rational functions on X . Let

D0 ⊆ D be the kernel of D → Cl(X ). Fix a shift-

ing family, i.e., a family of OX -module isomorphisms

ϱD0 : S → S, where D0 ∈ D0, such that

• ϱD0 (SD) = SD+D0 for all D ∈ D, D0 ∈ D0,

• ϱD0
1+D

0
2
= ϱD0

2
◦ ϱD0

1
for all D0

1 , D
0
2 ∈ D

0,

• ϱD0 (fg) = fϱD0(g) for all D0 ∈ D0 and any two

homogeneous f, g.

Consider the quasicoherent sheaf I of ideals of S gen-

erated by all sections of the form f − ϱD0 (f ), where f

is homogeneous and D0 runs through D0. Then I is

homogeneous with respect to the coarsened grading

S =
⊕

[D]∈Cl(X )

S[D] , S[D] =

⊕

D′∈D+D0

OX (D′).
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Moreover, it turns out that I is a sheaf of radical

ideals. Dividing the Cl(X )-graded S by the homoge-

neous ideal I, we obtain a quasicoherent sheaf of

Cl(X )-graded OX -algebras, the Cox sheaf: set R :=
S/I, let π : S → R be the projection and define the

grading by

R =
⊕

[D]∈Cl(X )

R[D] , R[D] = π
(
S[D]
)
.

One can show that, up to isomorphism, the graded

OX -algebra R does not depend on the choices of D

and the shifting family. We define the Cox ring R(X )
of X , also called the total coordinate ring of X , to be

the Cl(X )-graded algebra of global sections of the Cox

sheaf:

R(X ) := Γ(X,R) � Γ(X,S)/Γ(X,I).

We are ready to perform first computations of Cox

rings. Our aim is to relate the Cox ring of a prevariety

X to that of a (separated) variety arising in a canonical

way from X . We say that an open subset U ⊆ X is

big if the complement X \U is of codimension at least

two in X .
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Definition 2.1. By a separation of a prevariety X

we mean a rational map ϕ : X d Y to a (separated)

variety Y , which is defined on a big open subset U ⊆

X and maps U locally isomorphic onto a big open

subset V ⊆ Y .

Remark 2.2. Let ϕ : X d Y be a separation. Then

there are big open subsets U ⊆ X and V ⊆ Y such

that ϕ : U → V is a local isomorphism and moreover

there are prime divisors C0, . . . , Cr on V such that

(i) ϕ maps U \ ϕ−1(C0 ∪ . . . ∪ Cr ) isomorphically

onto V \ (C0 ∪ . . . ∪ Cr ),
(ii) Each ϕ−1(Ci) is a disjoint union of prime di-

visors Cij of U .

As we will see in Proposition 3.5, every prevariety

X with finitely generated divisor class group admits

a separation X → Y . Here comes how the Cox rings

R(X ) and R(Y ) are related to each other; for the sake

of a simple notation, we identify prime divisors of the

big open subsets U ⊆ X and V ⊆ Y with their closures

in X and Y respectively.

Proposition 2.3. Let ϕ : X d Y be a separation,

C0, . . . , Cr prime divisors on Y as in 2.2, and ϕ
−1(Ci) =
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Ci1 ∪ . . .∪Cini with pairwise disjoint prime divisors Cij
on X. Then ϕ∗ : Cl(Y ) → Cl(X ) is injective, and we
have

Cl(X ) = ϕ∗ Cl(Y ) ⊕
⊕

0≤i≤r,
1≤j≤ni−1

Z[Cij].

If Γ(X,O∗) = K∗ holds and Cl(X ) is finitely generated,
then there is a canonical injective pullback homomor-

phism ϕ∗ : R(Y ) → R(X ) of Cox rings. Moreover, with
deg(Tij) := [Cij] and Ti := Ti1 · · · Tini , the assignment

Tij 7→ 1Cij defines a Cl(X )-graded isomorphism

R(Y )[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈Ti − 1Ci ; 0 ≤ i ≤ r〉
→ R(X ).

Proof. Since divisor class group and Cox ring do not

change when passing to big open subsets, we may as-

sume U = X and V = Y in the setting of Remark 2.2.

The assertion on the divisor class group follows im-

mediately from the facts that the principal divisors of

X are precisely the pull backs of principal divisors on

Y and that the divisor class group of X is generated

by all pullback divisors and the classes [Cij], where

0 ≤ i ≤ r and 1 ≤ j ≤ ni − 1.

We turn to the Cox rings. Let DY ⊆ WDiv(Y ) be a

finitely generated subgroup containing C0, . . . , Cr and
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mapping onto Cl(Y ). Moreover, let DX ⊆ WDiv(X ) be

the subgroup generated by ϕ∗(DY ) and the divisors

Cij, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni − 1; note that Cini ∈

DX holds. Consider the associated graded sheaves

SY :=
⊕

E∈DY

OY (E), SX :=
⊕

D∈DX

OX (D).

Then we have a graded injective pullback homomor-

phism ϕ∗ : SY → SX , which in turn extends to a ho-

momorphism

ψ : SY [Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ] → SX , Tij 7→ 1Cij .

We show that ψ is surjective. Given a section h

of SX of degree D ∈ DX , consider its divisor D(h) =
div(h)+D. If there occurs a Cij ∈ DX in D(h), then we

may divide h in SX by the corresponding 1Cij . Doing

this as often as possible, we arrive at some section h′

of SX , homogeneous of some degree D′ ∈ DX , such

that D(h′) = div(h′) + D′ has no components Cij. But

then D′ is a pullback divisor and h′ is a pullback

section. This in turn means that h′ is a polynomial

over ϕ∗SY and the 1Cij .

Next, we determine the kernel of ψ, which amounts

to determining the relations among the sections sij :=
1Cij . Consider two coprime monomials F, F ′ in the
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sij and two homogeneous pullback sections h, h′ of

ϕ∗(SY ). If deg(hF ) = deg(h′F ′) holds in DX , then the

difference deg(F ′) − deg(F ) must be a linear combi-

nation of some ϕ∗(Ci) ∈ DX and hence F and F ′ are

products of some ϕ∗1Ci . As a consequence, we ob-

tain that any homogeneous (and hence any) relation

among the sij is generated by the relations Ti − 1Ci .

Finally, fix a shifting family ϱY for SY . Since D0
X =

ϕ∗(D0
Y ) holds, the pullback family ϕ∗ϱY extends uniquely

to a shifting family ϱX for SX . We have IX = ϕ
∗(IY )

and hence obtain a well defined graded pullback ho-

momorphism ϕ∗ : R(Y ) → R(X ), which is injective,

because ϕ∗ : DY/D0
Y → DX/D

0
X is so and ϕ∗ : SY →

SX is an isomorphism when restricted to homoge-

neous components. Now one directly verifies that the

above epimorphism ψ induces the desired isomor-

phism. �

We apply this result to compute the Cox ring of the

prevariety occurring as non-separated orbit space for

torus actions of complexity one. Consider the projec-

tive line P1, a tuple A = (a0, . . . , ar ) of pairwise differ-

ent points ai on P1, and a tuple n = (n0, . . . , nr ) ∈ Zr≥1,
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where r ≥ 1. Set

Xij := P1 \
⋃

k,i

ak , 0 ≤ i ≤ r, 1 ≤ j ≤ ni .

Then, gluing the Xij along the common open subset

P1 \ {a0, . . . , ar }, one obtains an irreducible smooth

prevariety P1(A, n) of dimension one. The inclusion

maps Xij → P1 glue together to a morphism π : P1(A, n)→
P1, which is a separation. Writing aij for the point in

P1(A, n) stemming from ai ∈ Xij, we obtain the fiber

over a point a ∈ P1 as

π−1(a) =


{ai1, . . . , aini } a = ai for some 0 ≤ i ≤ r,

{a} a , ai for all 0 ≤ i ≤ r.

For every 0 ≤ i ≤ r, define a monomial Ti := Ti1 · · · Tini
in the polynomial ring K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ].
Moreover, for every ai ∈ P1 fix a presentation ai =

[bi , ci ] with bi , ci ∈ K and for every 0 ≤ i ≤ r − 2 set

k = j + 1 = i + 2 and define a trinomial

gi := (ckbj − cjbk)Ti + (cibk − ckbi)Tj + (cjbi − cibj)Tk.
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Proposition 2.4. The divisor class group of P1(A, n) is
free of rank n0+. . .+nr−r and there is a decomposition

Cl(P1(A, n)) =

n0⊕

j=1

Z·[a0j] ⊕
r⊕

i=1


ni−1⊕

j=1

Z·[aij]

 .

Moreover, in terms of the above data andwith deg(Tij) :=
[aij], the Cox ring of P1(A, n) is given as

R(P1(A, n)) �
K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈gi ; 0 ≤ i ≤ r − 2〉
.

Proof. The statement on the divisor class group is

clear. The description of the Cox ring follows from

Proposition 2.3 and the fact that the Cox ring R(P1)
of the projective line is generated by the canonical

sections si := 1ai and has the relations

(ckbj − cjbk)si + (cibk − ckbi)sj + (cjbi − cibj)sk = 0,

where 0 ≤ i ≤ r − 2, and k = j + 1 = i + 2; note that

the dependence of these relations on the choice of the

bi , ci reflects the choice of a shifting family. �

Now we discuss some geometric aspects of the

Cox ring. As before, let X be a normal prevariety

with Γ(X,O∗) = K∗ and finitely generated divisor class

group, and let R be a Cox sheaf. Suppose that R is
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locally of finite type; this holds for example if X is

locally factorial or if R(X ) is finitely generated. Then

we may consider the relative spectrum

X̂ := SpecX (R).

The Cl(X )-grading of the sheaf R of OX -algebras de-

fines an action of the diagonalizable group HX :=
SpecK[Cl(X )] on X̂ , and the canonical morphism p : X̂ →
X is a good quotient, i.e., it is an HX -invariant affine

morphism satisfying

OX = (p∗OX̂ )HX .

We call p : X̂ → X the universal torsor associated to

R. If the Cox ring R(X ) is finitely generated, then we

define the total coordinate space of X to be the affine

variety X = Spec(R(X )) together with the HX -action

defined by the Cl(X )-grading of R(X ).
As usual, we say that a Weil divisor

∑
aDD, where

D runs through the irreducible hypersurfaces, on a

prevariety Y with an action of a group G is G-invariant

if aD = ag·D holds for all g ∈ G. We say that Y is G-

factorial if every G-invariant divisor on G is principal.

Moreover, we say that a prevariety Y is of affine in-

tersection if for any two affine open subsets V, V ′ ⊆ Y

the intersection V ∩ V ′ is again affine.
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Proposition 2.5. Let X be an irreducible smooth pre-

variety of affine intersection with Γ(X,O∗) = K∗ and
finitely generated divisor class group. Let R be a Cox

sheaf and denote by p : X̂ → X the associated univer-

sal torsor.

(i) X̂ is a normal quasiaffine variety, and every

homogeneous invertible function on X̂ is con-

stant. If Γ(X,O) = K holds or Cl(X ) is free,
then even every invertible function on X̂ is con-

stant.

(ii) The action of HX on X̂ is free and X̂ is HX -

factorial. If Cl(X ) is free, then X̂ is even facto-
rial.

Proof. Normality of X̂ follows from [5, Lemma 3.10].

Since X is of affine intersection, it can be covered by

open affine subsets, the complements of which are

of pure codimension one. Together with smoothness

this implies that X is divisorial in the sense of [5,

Sec. 4]. Thus, we infer from [5, Prop. 6.3] that X̂ a

quasiaffine variety. The fact that every homogeneous

invertible function on X̂ is constant is seen as in [11,

Prop. 2.2 (i)]. Moreover, [5, Thm. 7.3] tells us that

every invertible function on X̂ is constant if we have



20 J. HAUSEN AND H. SÜSS

Γ(X,O) = K. For Assertion (ii), we can proceed exactly

as in the proof of [11, Prop. 2.2 (iv)]. �

Proposition 2.6. Let X be an irreducible smooth pre-

variety of affine intersection with Γ(X,O∗) = K∗ and
finitely generated divisor class group. Let R be a Cox

sheaf on X and p : X̂ → X the associated universal tor-

sor. Assume that T × X → X is an effective algebraic

torus action.

(i) There is a T-action on X̂ and an epimorphism

ε : T → T such that for all h ∈ HX , t ∈ T and

z ∈ X̂ one has

t ·h ·z = h ·t ·z, p(t ·z) = ε(t)·p(z).

If the divisor class group Cl(X ) is free, then
one may take the homomorphism ε : T → T to

be the identity.

(ii) Let T ×HX act on X̂ as in (i), let G
′ ⊆ T ×HX be

the trivially acting subgroup and consider the

induced effective action of G := (T × HX )/G′

on X̂. Then for any z ∈ X̂ , there is an isomor-

phism of isotropy groups Gz � Tp(z).

Proof. We prove (i). Take a group D ⊆ WDiv(X ) of

Weil divisors mapping onto the divisor class group,
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and let D1, . . . , Dr ∈ WDiv(X ) be a basis of D such

that the kernel D0 ⊆ D of D → Cl(X ) has a basis of

the form aiDi , where 1 ≤ i ≤ s with some s ≤ r.

For every Di choose a T -linearization, and via ten-

soring these linearizations, define a T -linearization of

the whole group D, compare [10, Sec. 1]. Note that

the T -linearization of the trivial divisor aiDi is given

by a character χi . Set b := a1 · · ·as and consider the

epimorphism ε : T → T , t 7→ tb. Then we have a new

T -action

T × X → X, (t, x) 7→ ε(t)·x.

The divisors D ∈ D are as well linearized with respect

to this new action. Twisting each T -linearization of

Di with χ−b/aii , we achieve that each aiDi is trivially

T -linearized with respect to the new T -action on X .

Thus, we may choose T -equivariant isomorphisms

ϱi : OX → OX (aiDi).
Let S denote the D-graded sheaf defined by D. Us-

ing the isomorphisms ϱi , we construct a T -equivariant

shifting family: for D0
= b1a1D1 + · · · + bsasDs, define

a T -equivariant isomorphism ϱD0 : S → S by sending

a D-homogeneous f to

ϱD0 (f ) := ϱ1(1)b1 · · · ϱs(1)bs f.
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The ideal I of S associated to this shifting family is

T -homogeneous. This means that the T -action on

SpecXS defined by the T -linearization of D leaves X̂

invariant. By construction, the torsor p : X̂ → X is

T -equivariant, when we take the new T -action on X .

We turn to (ii). Let ε : T → T be as in (i). A first

step is to show that for any given point z ∈ X̂ , the

kernel of ineffectivity G′ ⊆ T × HX can be written as

G′ = {(t, h) ∈ (T × HX )z; ε(t) = 1}.

In order to verify the inclusion ‘‘⊆’’, let (t, h) ∈ G′ be

given. Then (t, h)·z′ = z′ holds for every point z′ ∈ X̂ .

In particular, (t, h) belongs to (T × HX )z. Moreover,

we obtain ε(t) ·p(z′) = p(z′) for every z′ ∈ X̂ . Since

p : X̂ → X is surjective and T acts effectively on X ,

this implies ε(t) = 1.

For checking the inclusion ‘‘⊇’’, consider (t, h) ∈
(T×HX )z with ε(t) = 1. Then, for every z′ ∈ X̂ , we have

p((t, h)·z′) = p(z′). Consequently t·z′ = h(t, z′)·z′ holds

with a uniquely determined h(t, z′) ∈ HX . Consider

the assignment

η : X̂ → HX , z′ 7→ h(t, z′).

Since HX acts freely we may choose for any z′ ho-

mogeneous functions f1, . . . , fr , defined near z′ with
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fi(z′) = 1 such that their weights χ1, . . . , χr form a

basis of the character group of HX . Then, near z′, we

have a commutative diagram

X̂
η

xxqqqqqqqqqqqqq
z′ 7→ (f1(t·z′),...,fr (t·z′))

''NNNNNNNNNNNNN

HX
�

h′ 7→ (χ1(h′),...,χr (h′))
// (K∗)r

Consequently, the map η is is a morphism. More-

over, pulling back characters of HX via η gives in-

vertible HX -homogeneous functions on X̂ , which by

Proposition 2.5 (i) are constant. Thus, η is constant,

which means that h(t) := h(t, z′) does not depend on

z′. By construction, (t, h(t)−1) belongs to G′. More-

over, t ·z = h−1 ·z and freeness of the HX -action give

h(t) = h−1. This implies (t, h) ∈ G′.
We are ready to prove the assertion. Note that

(t, h) 7→ ε(t) defines a homomorphism ̙ : (T ×HX )z →
Tp(z). We claim that ̙ is surjective. Given t ∈ Tp(z),

choose t′ ∈ T with ε(t′) = t. Then we have

p(t′ ·z) = ε(t′)·p(z) = t ·p(z) = p(z).

Consequently, t′·z = h·z holds for some h ∈ HX . Thus,

(t′, h−1) ∈ (T × HX )z is mapped by ̙ to t ∈ Tp(z). By
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the first step, the kernel of ̙ is just G′. This gives a

commutative diagram

(T × HX )z
̙

//

/G′
$$IIIIIIIII

Tp(z)

Gz

�

=={{{{{{{{

�

In the sequel, we mean by a universal torsor for

X more generally any good quotient q : X → X for

an action of HX on a variety X such that there is an

equivariant isomorphism ı : X → X̂ with q = p ◦ ı.

Proposition 2.7. Let X be a normal quasiaffine va-

riety with a free action of a diagonalizable group H.

If every invertible function on X is constant and X is

H-factorial, then the quotient q : X → X is a universal

torsor for X := X/H.

Proof. We have H = SpecK[K] with the character lat-

tice K of H. A first step is to provide an isomorphism

K → Cl(X ). Cover X by H-invariant affine open sub-

sets Wj such that, for every w ∈ K and every j, there

is a w-homogeneous hw,j ∈ Γ(Wj,O
∗). Moreover, for

every w ∈ K, fix a w-homogeneous hw ∈ K(X)∗. Then
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the H-invariant local equations hw/hw,j define a Weil

divisor D(hw) on X satisfying

D(hw) = div(hw/hw,j) on q(Wj), q∗(D(hw)) = div(hw).

We claim that the assignment w 7→ D(hw) induces an

isomorphism from K onto Cl(X ), not depending on

the choice of hw:

K → Cl(X ), w 7→ D(w) := [D(hw)].

To see that the class D(w) does not depend on the

choice of hw, consider a furtherw-homogeneous gw ∈

K(X )∗. Then f := hw/gw is an invariant rational func-

tion descending to X , where we obtain

D(hw) − D(gw) = div(f ).

Thus, K → Cl(X ) is a well defined homomorphism.

To verify injectivity, let D(hw) = div(f ) for some f ∈

K(X )∗. Then we obtain div(hw) = div(q∗(f )). Thus,

hw/q
∗(f ) is an invertible homogeneous function on

X and hence is constant. This implies w = 0. For

surjectivity, let any D ∈WDiv(X ) be given. Then q∗(D)
is an H-invariant divisor on X and hence we have

q∗(D) = div(h) with some rational function h on X,

which is homogeneous of some degreew. This means

D = D(h).
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Now, choose a group D ⊆WDiv(X ) of Weil divisors

mapping onto the divisor class group Cl(X ), and let

D1, . . . , Dr ∈ WDiv(X ) be a basis of D such that the

kernel D0 ⊆ D of D→ Cl(X ) is generated by multiples

aiDi , where 1 ≤ i ≤ s with some s ≤ r. Set

S :=
⊕

D∈D

SD, SD := OX (D).

By the preceding consideration, we may assume Di =

D(hwi
) for 1 ≤ i ≤ r. Then, for D = b1D1+. . .+brDr , we

have D = D(hw) with hw = h
b1
w1
· · ·hbrwr

, where w = [D]
is the class of D = D(hw) in K = Cl(X ). For any open

U ⊆ X , we have an isomorphism of K-vector spaces

ΦU,D : Γ(U,O(D(hw))) → Γ(q−1(U ),O)w, g 7→ q∗(g)hw.

In fact, on each Uj := q(Wj)∩U the section g is given as

g = g′jhj/hw with a regular function g′j ∈ O(Uj). Con-

sequently, the function q∗(g)hw is regular on q−1(U ).
In particular, the assignment is a well defined homo-

morphism. Moreover, f 7→ f/hw defines an inverse

homomorphism.

The ΦU,D fit together to an epimorphism of sheaves

Φ : S → q∗(OX). We claim that the kernel I of Φ is the

ideal of a shifting family ϱ. Indeed, for any D0 ∈ D0,
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consider

h0 := Φ−1
X,D0 (ΦX,0(1)) ∈ Γ(X,SD0).

Then ϱD0
: SD → SD+D0 , g 7→ h0g is as wanted. Thus,

we obtain an induced isomorphism R → q∗OX, where

R = S/I is the associated Cox sheaf. This in turn

defines the desired isomorphism X → X̂ . �

3. Proof of Theorems 1.1, 1.2 and 1.3

We begin with a couple of elementary observations.

Let a diagonalizable group G act effectively on a nor-

mal quasiaffine variety U . Recall that a function

f ∈ Γ(U,O) is said to be G-homogeneous of weight

χ ∈ X(G) if one has f (g·x) = χ(g)f (x) for all g ∈ G and

x ∈ X .

Lemma 3.1. If there is a G-fixed point x ∈ U, then

every G-homogeneous function f ∈ Γ(U,O) with f (x) ,
0 is G-invariant.

Proof. Let χ ∈ X(G) be the weight of f ∈ Γ(U,O). Then,

for every g ∈ G, we have f (x) = χ(g)f (x), which im-

plies χ(g) = 1. Thus, χ is the trivial character. �

By a G-prime divisor on U we mean a G-invariant

Weil divisor
∑
aDD, where D runs through the prime
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divisors, we always have aD ∈ {0,1} and G permutes

transitively the D with aD = 1. Let B1, . . . , Bm ⊆ U

be G-prime divisors and suppose that there are ho-

mogeneous functions f1, . . . , fm ∈ Γ(U,O) that satisfy

div(fi) = Bi . Let χi ∈ X(G) be the weight of fi .

Lemma 3.2. For i = 1, . . . , m, let Gi ⊆ G be the

generic isotropy group of Bi and set G0 := G1 · · ·Gm ⊆

G.

(i) The restriction of χi to Gi generates the char-

acter group X(Gi).
(ii) For any two i, j with j , i, the function fi is

Gj-invariant.

(iii) The group G0 is isomorphic to the direct prod-

uct of the Gi ⊆ G.

(iv) Γ(U,O) is generated by f1, . . . , fm and the G0-

invariant functions of U.

Proof. Choose G-invariant affine open subsets Ui ⊆ U

such that Ai := Ui ∩ Bi is non-empty and Ui ∩ Bj is

empty for every j , i.

To prove (i), let ξi ∈ X(Gi) be given. Then ξi is the

restriction of some ηi ∈ X(G). Let Vi ⊆ Ui be a G-

invariant affine open subset on which G acts freely,

and choose a non-trivial G-homogeneous function hi
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of weight ηi on Vi . Suitably shrinking Ui , we achieve

that hi is regular without zeroes on Ui \ Ai . Then,

on Ui , the divisor div(hi) is a multiple of the G-prime

divisor Ai = div(fi) and hence hi = ai f
k
i holds with a

G-homogeneous invertible function ai on Ui and some

k ∈ Z. By Lemma 3.1, the function ai is Gi-invariant.

We conclude ηi = kχi on Gi .

Assertion (ii) is clear by Lemma 3.1. To obtain (iii),

it suffices to show that χi is trivial on Gj for any two i, j

with j , i. But, according to (ii), we have fi = χi(g)fi for

every g ∈ Gj, which gives the claim. Finally, we ver-

ify (iv). Given a G-homogeneous function f ∈ Γ(U,O),
we may write f = f ′f ν1

1 · · · f
νm
m with νi ∈ Z≥0 and a

regular function f ′ on U , which is homogeneous with

respect to some weight χ′ ∈ X(G) and has order zero

along each G-prime divisor Bi . By Lemma 3.1, the

function f ′ is invariant under every Gi and thus un-

der G0. �

Now we specialize to the case that B1, . . . , Bm ⊆ U

are precisely the G-prime divisors of U , which are

contained in U \ U0, where we set

U0 := {z ∈ U ; dim(Gz) = 0} ⊆ U.



30 J. HAUSEN AND H. SÜSS

Proposition 3.3. For i = 1, . . . , m, let Gi ⊆ G be the

generic isotropy group of Bi and set G0 := G1 · · ·Gm ⊆

G.

(i) Each Gi is a one-dimensional torus. Moreover,

there is a non-empty G0- invariant open subset

U ′ ⊆ U such that each Bi intersects the closure

of any orbit Gi ·z ⊆ U
′.

(ii) The G0-action on U0 is free, admits a geometric

quotient λ0 : U0 → V0 and the isotropy groups

of the induced action of H := G/G0 on V0 sat-

isfy Hλ0(x) � Gx for every x ∈ U0.

(iii) V0 is quasiaffine and, moreover, if U is G-

factorial (admits only constant invertible func-

tions), then V0 is H-factorial (admits only con-

stant invertible functions).

(iv) Every G0-invariant rational function of U has

neither poles nor zeroes along outside U0. More-

over, there is an isomorphism

Γ(U0,O)G0 [S1, . . . , Sm ] → Γ(U,O), Si 7→ fi .

Proof. We prove (i). By Lemma 3.2 (i), every Gi is

a one-dimensional torus. To proceed, take any G0-

equivariant affine closure U ⊆ U and consider the

quotient λi : U → U//Gi . It maps the fixed point set
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of the Gi-action isomorphically onto its image in the

quotient space U//Gi . Since U//Gi is irreducible and

of dimension at most dim(U ) − 1, we obtain λi(Bi) =
U//Gi for the closure Bi of Bi in U . It follows that Bi
is irreducible, equals the whole fixed point set of Gi
in U and any Gi-orbit of U has a point of Bi in its

closure.

We turn to (ii). Since none of the fi has a zero inside

U0, we infer from Lemma 3.2 that G0 acts freely on

U0. In particular, the action of G0 on U0 admits a

geometric quotient λ0 : U0 → V0 with a prevariety V0.

The statement on the isotropy groups of the H-action

on V0 is obvious.

We prove the statements made in (iii) and (iv). De-

noting by Tm the standard m-torus (K∗)m , we have a

well defined morphism of normal prevarieties

ϕ : U0 → V0 × T
m , x 7→ (λ0(x), f1(x), . . . , fm(x)).

According to Lemma 3.2, the weight χi of fi gener-

ates the character group of Gi for i = 1, . . . , m. Us-

ing this and the fact that G0 is the direct product of

G1, . . . , Gm , we conclude that ϕ is bĳective and thus

an isomorphism. In particular, we conclude that V0

is quasiaffine, because U and hence U0 is so.
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Now, endow V0 with the induced action of H =

G/G0 and Tm with the diagonal G0-action given by the

weights χ1, . . . , χm of f1, . . . , fm . Then ϕ becomes G-

equivariant, where G acts via the splitting G = H ×G0

on V0 × T
m . Using this, we see that G-factoriality of

U0 implies H-factoriality of V0.

We show now that everyG0-invariant rational func-

tion f ∈ K(U0) has neither zeroes nor poles outside

U0. Recall that U \ U0 is the union of the zero sets

Bi of fi , which in turn are the fixed point sets of the

Gi-actions on U . Since the general orbit G0 ·x ⊆ U

has a point xi ∈ Bi in its closure, we see that f has

neither poles nor zeroes along the Bi . In particular, if

f is regular on U0 then it is so on the whole U . As a

consequence, we obtain that every invertible function

on V0 is constant provided the same holds for U .

Finally, according to Lemma 3.2 (iv), the homo-

morphism of (iv) is surjective. Moreover, since the

weights χ1, . . . , χm of the f1, . . . , fm are a basis of the

character group of G0, there are no relations among

the fi . �

Let a diagonalizable group H act effectively with at

most finite isotropy groups on a quasiaffine variety

V . Suppose that V is H-factorial and admits only
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constant invertible functions. Denote by C1, . . . , Cn ⊆

V those H-prime divisors of V , on which H acts with

a non trivial generic isotropy group Hj of order lj > 1

and let g1, . . . , gn be homogeneous functions on V

with div(gj) = Cj.

Proposition 3.4. Consider the action of H0 := H1 · · ·Hn ⊆

H on V, and let κ : V → W be the associated quotient.

(i) W is a quasiaffine variety with an effective

induced action of H/H0, and h 7→ κ∗(h) and
Tj 7→ gj define an isomorphism

Γ(W,O)[T1, . . . , Tn ]/〈T ljj −g
lj
j ; j = 1, . . . , n〉 → Γ(V,O).

(ii) W admits an (H/H0)-factorial big open subset
W0 ⊆ W such thatH/H0 acts freely onW0 and

W0 has only constant invertible functions.

Proof. We prove (i). By Lemma 3.2 (i), every Hj is

cyclic. Moreover, Lemma 3.2 (iv) tells us that there is

an epimorphism

Γ(W,O)[T1, . . . , Tn ] → Γ(V,O), h 7→ κ∗(h), Tj 7→ gj.

From Lemma 3.2 (iii) we infer that H0 ⊆ H is the di-

rect product of H1, . . . , Hn ⊆ H. Thus, the quotient

κ : V → W can as well be obtained by dividing step-

wise by effective actions of the Hj. Using this, one
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directly checks that the kernel of this epimorphism

is the ideal generated by T
lj
j − g

lj
j , where 1 ≤ j ≤ n.

We turn to (ii). Note that W admits only constant

invertible functions. Let V0 ⊆ V denote the subset

consisting of all points y ∈ V that have either trivial

isotropy group H0,y or belong to some Cj and have

isotropy group H0,y = Hj. Note that V0 ⊆ V is big, H-

invariant and open. Set W0 := κ(V0). Then W0 ⊆ W

is big and the restriction κ : V0 → W0 is a quotient for

the action of H0. By construction, H/H0 acts freely

on W0.

We show that W0 is H/H0-factorial. Since V0 and

W0 are normal, there is a smooth (H/H0)-invariant

big open subset W1 ⊆ W0 such that V1 := κ−1(W1)
is also smooth and big in V0. We have to show that

every (H/H0)-linearizable bundle on W1 is trivial. Ac-

cording to [14, Cor. 5.3], we have two exact sequences
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fitting into the following diagram

1

��
Pic(W1)

κ∗

��
1 // X(H0) α // PicH0

(V1)
̙

//

δ

��

Pic(V1)

∏n
i=1X(Hi)

where the isotropy groupsH1, . . . , Hn generateH0 and

hence ̙ ◦κ∗ and δ ◦α are injective. Given an (H/H0)-
linearized bundle L onW1, the pullback κ∗(L) is trivial

by assumption, which means ̙(κ∗(L)) = 1. Conse-

quently, L is trivial. �

Proof. Proof of Theorem 1.1 We prove the statement

more generally for the cases that Γ(X,O) = K holds or

that Γ(X,O∗) = K∗ holds and Cl(X ) is free. Since the

Cox ring of X and that of its smooth locus coincide,

we may assume that X is smooth. Consider the uni-

versal torsor p : X̂ → X . By Proposition 2.5, this is a



36 J. HAUSEN AND H. SÜSS

geometric quotient for a free action of the diagonaliz-

able group HX := SpecK[Cl(X )] on X̂ and X̂ has only

constant globally invertible functions. Fix a lifting of

the T -action to X̂ as in Proposition 2.6 (i) and, as in

Proposition 2.6 (ii), let G be the quotient of T ×HX by

the kernel of ineffectivity of its action on X̂ . Then G

acts effectively on X̂ and Proposition 2.5 (ii) tells us

that X̂ is G-factorial.

Consider the T -invariant prime divisors E1, . . . , Em ⊆

X supported in X \ X0. Their inverse images Êk :=
p−1(Ek) areG-prime divisors and, since X̂ isG-factorial,

we have Êk = div(fk) with some G-homogeneous fi ∈

R(X ). According to Proposition 2.6 (ii), the Êk are pre-

cisely the G-prime divisors supported in X̂ \X̂0. More-

over, consider the T -invariant prime divisorsD1, . . . , Dn ⊆

X along which T acts with a finite generic isotropy

group of order lj > 1 and their (G-prime) inverse im-

ages D̂j := p−1(Dj). As before, we see that D̂j = div(gj)
holds with some G-homogeneous gj ∈ R(X ) and the

generic isotropy group of the G-action on D̂j has or-

der lj. Note that none of the D̂j equals one of the Êk.

Moreover, we may view the functions fk and gj as the

canonical sections of the divisors Ek and Dj.
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Let Gk ⊆ G denote the generic isotropy group of

Êk ⊆ X̂k. The action ofG0 := G1 · · ·Gm on X̂0 = p
−1(X0)

admits a geometric quotient λ0 : X̂0 → Ŷ0. The factor

group H := G/G0 acts with at most finite isotropy

groups on Ŷ0 and, by Proposition 3.3 (ii), has generic

isotropy group Hj ⊆ H of order lj along the divisors

Ĉj := λ0(D̂j). Set H0 := H1 · · ·Hn and let κ : Ŷ0 → Ẑ0

denote the quotient for the action of H0 on Ŷ0. The

induced action of F := H/H0 on Ẑ0 admits again a

geometric quotient Ẑ0 → Z0 and the whole situation

fits into the following commutative diagram.

(3.1) X̂ ⊇

/HX

��

X̂0

/G0 //

/HX

��

Ŷ0

/H0 // Ẑ0

/F

��
X ⊇ X0

/T
// Z0

Replacing Z0 and X0 as well as Ẑ0, Ŷ0 and X̂0 with

suitable big open subsets, we achieve that the group

F acts freely on Ẑ0.

We show that Ẑ0 → Z0 is a universal torsor for

Z0. According to Proposition 2.7 this means to verify

that Ẑ0 is an F -factorial quasiaffine variety with only
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constant invertible functions. Proposition 3.3 pro-

vides the corresponding properties for the H-variety

Ŷ0. Moreover, by Lemma 3.1, every gj is G0-invariant,

hence gj descends to a function on Ŷ0, where we have

div(gj) = Ĉj. Thus, we can apply Proposition 3.4 to

obtain the desired properties for Ẑ0 and the action of

F .

The final task is to relate the Cox rings R(X ) =
Γ(X̂ ,O) and R(Z0) = Γ(Ẑ0,O) to each other. Note that

we have canonical inclusions of graded algebras

Γ(X̂ ,O) ⊇ Γ(X̂0,O)G0 = Γ(Ŷ0,O) ⊇ Γ(Ŷ0,O)H0 = Γ(Ẑ0,O),

where the first one is due to Proposition 3.3. This

allows us in particular to view Γ(Ẑ0,O) as a graded

subalgebra of Γ(X̂ ,O). The assertion now follows from

Proposition 3.3 (iv) and Proposition 3.4 (i). �

In the above proof, we realized a big open subset

of X0/T as a quotient of a quasiaffine variety with

only constant invertible functions by a free action of a

diagonalizable group, see the diagram 3.1. According

to Proposition 2.7, this allowed us to define a Cox

ring for X0/T . Moreover, we use this now to show

that X0/T admits a separation.
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Proposition 3.5. Let X be a normal quasiaffine va-

riety with a free action of a diagonalizable group H.

Suppose that every invertible function onX is constant

and that X is H-factorial. Then X := X/H admits a

separation.

Proof. We first treat the case of a certain toric vari-

ety. Consider the standard action of Tr = (K∗)r on Kr ,

let Z ⊆ Kr be the union of all orbits of the big torus

Tr ⊆ Kr of dimension at least r − 1, and let H ⊆ Tr be

a closed subgroup acting freely on Z. The fan Σ of Z

has the extremal rays of the positive orthant Qr≥0 as

its maximal cones and Z := Z/H is the toric preva-

riety obtained by gluing the orbit spaces Zϱ/H along

their common big torus T/H, where Zϱ ⊆ Z denotes

the affine toric chart corresponding to ϱ ∈ Σ. The em-

bedding H → Tr corresponds to a surjection Zr → K

of the respective character groups. Let P : Zr → N be

a map having Hom(K,Z) as its kernel. Then we obtain

a canonical separation Z → Z ′ onto a toric variety Z ′,

the fan of which lives in N and consists of the cones

P(ϱ), where ϱ ∈ Σ.

In the general case, choose a finitely generated

graded subalgebra A ⊆ Γ(X,O) such that we obtain
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an open embedding X ⊆ X , where X := SpecA. Prop-

erly enlarging A, we may assume that it admits a sys-

tem f1, . . . , fr of homogeneous generators such that

each div(fi) isH-prime in X̂ . Consider theH-equivariant

closed embedding X → Kr defined by f1, . . . , fr and let

Z ⊆ Kr be as above. By construction, U := Z ∩ X is

a big H-invariant open subset of X, and we obtain a

commutative diagram

U //

/H

��

Z

/H

��
U // Z

where the induced map U → Z of quotients is a lo-

cally closed embedding and Z is a toric prevariety.

Again by construction, the intersection of the invari-

ant prime divisors of Z with U are prime divisors on

U . Consequently, the restriction of Z → Z ′ defines

the desired separation U → U ′ �

Proof. Proof of Theorem 1.2 We prove the statement

more generally for the cases that Γ(X,O) = K holds or

that Γ(X,O∗) = K∗ holds and Cl(X ) is free. By Propo-

sition 3.5, the orbit space X0/T admits a separation
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π : X0/T → Y . According to Remark 2.2, we may as-

sume that there are prime divisors C0, . . . , Cr on Y

such that each π−1(Ci) is a disjoint union of prime

divisors Cij ⊆ X0/T , where 1 ≤ j ≤ ni , the map π is an

isomorphism over Y \(C0∪. . .∪Cr ) and all the Dj occur

among the divisors Dij := q−1(Cij). Then, according to

Proposition 2.3, we have

R(X0/T ) �
R(Y )[T̃ij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈T̃i − 1Ci ; 0 ≤ i ≤ r〉
,

where the variables T̃ij correspond to the canonical

sections 1Cij and we define T̃i := T̃i1 · · · T̃ini . Let lij ∈

Z≥1 denote the order of the generic isotropy group of

Dij = q
−1(Cij). Then, by Theorem 1.1, we have

R(X ) � R(X0/T )[S1, . . . , Sm ; Tij] / 〈T
lij
ij − 1Cij 〉,

where the variables Tij correspond to the canonical

sections 1Cij ; note that 1Cij and 1Dij are identified for

lij = 1. Putting these two presentations of Cox ring

together, we arrive at the assertion. �

Proof. Proof of Theorem 1.3 We prove the statement

more generally for the case that Γ(X,O) = K holds.

Since the T -action on X is of complexity one, the

orbit space X0/T is of dimension one and smooth.
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Moreover, using the diagram 3.1 and Proposition 3.3,

we see that X0/T admits only constant global func-

tions and has a finitely generated divisor class group.

It follows that X0/T is isomorphic to P1(A, n), with

A = (a0, . . . , ar ) and n = (n0, . . . , nr ) defined as in The-

orem 1.3. By Proposition 2.4, the Cox ring P1(A, n) is

given by

R(P1(A, n)) � K[T̃ij] / 〈̃gi ; 0 ≤ i ≤ r − 2〉,(3.2)

where the variables T̃ij correspond to the canonical

sections of points aij in X0/T � P1(A, n). Their inverse

images Dij = q
−1(aij) under q : X0 → X0/T are prime

divisors with generic isotropy group of order lij ≥ 1;

note that lij = 1 is allowed. Applying Theorem 1.1

gives

R(X ) � R(P1(A, n))[S1, . . . , Sm , Tij] / 〈T
lij
ij − T̃ij〉,(3.3)

where the variables Si correspond to the divisors of X

having a one-dimensional generic isotropy group, the

variables Tij are the canonical sections of the divisors

Dij, and the T̃ij are identified with their pullbacks un-

der X0 → X0/T ; note that the pullback q∗(aij) equals

lijDij. Now, putting the descriptions (3.2) and (3.3)

together gives the assertion. �
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Remark 3.6. Note that for factorial affine varieties

with a complexity one torus action, D. Panyshev ob-

served in [18, Remark 2.12] a presentation of the al-

gebra of global functions by generators and trinomial

relations.

4. Cox ring via polyhedral divisors

In this section, we combine Theorem 1.2 with the

description of algebraic torus actions in terms of poly-

hedral divisors presented in [2] and [3] and provide

a combinatorial approach to the Cox ring of an alge-

braic variety with torus action. We begin with a brief

reminder on the language of polyhedral divisors.

In the sequel, N is a free finitely generated abelian

group, and M = Hom(N,Z) is its dual. The associated

rational vector spaces are denoted by NQ := N⊗Q and

MQ := M ⊗ Q. Moreover, σ ⊆ NQ is a pointed convex

polyhedral cone, and ω ⊆ MQ is its dual cone. The

relative interior of σ is denoted by σ◦, and if τ is a

face of σ, then we write τ � σ.

We consider convex polyhedra ∆ ⊆ NQ admitting a

decomposition ∆ = Π + σ with a (bounded) polytope

Π ⊆ NQ; we refer to σ as the tail cone of ∆ and refer to
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∆ as a σ-polyhedron. With respect to Minkowski ad-

dition, the set Pol+σ (N) of all σ-polyhedra is a monoid

with neutral element σ. We consider also the empty

set as an element of Pol+σ (N) and set ∆+∅ := ∅+∆ := ∅.
We are ready to enter the description of affine va-

rieties with an action of the torus T = SpecK[M ]. Let

Y be a normal variety and fix a pointed convex poly-

hedral cone σ ⊆ NQ. A polyhedral divisor on Y is a

formal finite sum

D =

∑

Z

∆Z · Z,

where Z runs over the prime divisors of Y and the co-

efficients ∆Z belong to Pol+σ (N); finiteness of the sum

means that only finitely many coefficients ∆Z differ

from the tail cone σ.

The locus of a polyhedral divisor D on Y is the

open subset Y (D) ⊆ Y obtained by removing all prime

divisors Z ⊆ Y with ∆Z = ∅. For every u ∈ ω ∩ M we

have the evaluation

D(u) :=
∑

Z

min
v∈∆Z
〈u, v〉·Z,
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which is an ordinary rational divisor living on Y (D).
We call the polyhedral divisor D on Y proper if its lo-

cus is semiprojective, i.e., projective over some affine

variety, and its evaluations D(u), where u ∈ ω ∩ M ,

have the following properties

(i) D(u) has a base point free multiple,

(ii) D(u) is big for u ∈ ω◦ ∩M .

Remark 4.1. Suppose that we have Y = Pn, and

consider a polyhedral divisorD =
∑
∆Z·Z . The degree

of D is the polyhedron

deg(D) :=
∑

Z

∆Z · deg(Z ) ∈ Pol+σ (N).

It provides a simple criterion for properness: if deg(D)
is a proper subset of the tail cone of D, then D is a

proper polyhedral divisor, see [2, Ex. 2.12.].

By construction, every polyhedral divisor D on a

normal variety Y defines a sheaf A(D) of M-graded

OY -algebras and its ring A(D) of global sections:

A(D) :=
⊕

u∈ω∩M

O(D(u)), A(D) := Γ(Y (D),A(D)).

Now suppose that D is proper. Then [2, Thm. 3.1]

guarantees that A(D) is a normal affine algebra. Thus,
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we obtain an affine variety X (D) := SpecA(D), which

comes with an effective action of the torus T = SpecK[M ].
By [2, Thm. 3.4], every normal affine variety with an

effective torus action is isomorphic to some X (D).

Example 4.2. Set N = Z2, let σ ⊆ NQ be the cone gen-

erated by the vectors (1,1) and (0,1), and consider

the σ-polyhedra ∆0 and ∆∞ given as follows:

b bb

∆0 := (0,1) + σ ∆∞ := ([0,1] × 0) + σ

Then we have a polyhedral divisorD := ∆0·{0}+∆∞·{∞}

on Y = P1. Its degree deg(D) and tail cone tail(D) are

given as

b b

deg(D) tail(D)
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In particular, deg(D) is a proper subset of tail(D),
and thus Remark 4.1 says that D is proper. The

associated T -variety is K3 with the action

t · z = (t−1
1 t2z1, t1z2, t2z3).

As in the case of toric varieties, general T -varieties

are obtained by gluing affine ones. In the combina-

torial picture, the gluing leads to the concept of a di-

visorial fan, which we recall now. As before, let N be

a finitely generated free abelian group, fix a pointed

convex polyhedral cone σ ∈ NQ, and let Y be a normal

variety. Consider two polyhedral divisors

D =
∑

Z

∆Z · Z, D′ =
∑

Z

∆
′
Z · Z

both living on Y . The intersection of D and D′ is the

polyhedral divisor D∩D′ on Y given by

D∩D′ :=
∑

Z

(∆′Z ∩ ∆Z ) · Z.

Moreover, given a (not necessarily closed) point y ∈ Y ,

we define the slice of D at y to be the polyhedron

Dy :=
∑

y∈Z

∆Z .
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Note that the slice DY is the empty sum and hence

equals the tail cone of D. We say that D′ is a face of

D and writeD′ � D ifD′y � Dy holds for all y ∈ Y and

the T -equivariant morphism X (D′) → X (D) given by

the inclusion A(D′) ⊇ A(D) is an open embedding.

Remark 4.3. Suppose that in the above setting, we

have Y = Pn. As a consequence of [3, Lem. 6.7] the

relation D′ � D holds if and only if we have

D′y � Dy for all y ∈ Y, deg(D)∩tail(D′) = deg(D′).

A divisorial fan is a finite set Ξ of polyhedral divi-

sors such that for any two D,D′ ∈ Ξ we have D �

D′ ∩ D � D′. For any y ∈ Y , we call the polyhedral

complex Ξy defined by the slices Dy the slice of Ξ at

y. We say that the divisorial fan Ξ is complete if Y

is complete and each of its slices Ξy is a complete

subdivision of NQ. The locus of Ξ is the open subset

Y (Ξ) :=
⋃

D∈Ξ

Y (D) ⊆ Y.

Given a divisorial fan Ξ consisting of proper poly-

hedral divisors, [3, Thm. 5.3] guarantees that we can

equivariantly glue the affine T -varieties X (D) along

the open subsets X (D∩D′), where D,D′ ∈ Ξ, to a T -

prevariety X (Ξ). If the divisorial fan Ξ is complete,
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then X (Ξ) is a complete normal T -variety. By [3,

Thm. 5.6], every normal variety with torus action is

isomorphic to some X (Ξ).

Example 4.4. Set N := Z2 and Y := P1. Consider the

six polyhedral divisors D1, . . . ,D6 with coefficients

over the points 0,1 and ∞ as indicated below.

b

D1

D4

D2

D3

D5

D6

b

D1

D4

D2

D3D5

D6

b

D1

D4

D2

D3

D5

D6

{0} {1} {∞}

The collections of degrees deg(Di) and tail cones tail(Di)
of these polyhedral divisors are given as
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b

D1

D4

D2

D3
D5

D6

b

D1

D4

D2

D3
D5

D6

deg(Di) tail(Di)

Remarks 4.1 and 4.3 yield thatD1, . . . ,D6 are proper

and form a divisorial fan Ξ. The T -variety X (Ξ) is the

projectivized cotangent bundle over P2.

For the description of the Cox ring of the T -variety

X defined by a divisorial fan, we first of all need a

description of the invariant prime divisors of X and

their generic isotropy groups. For this, we introduce

the following data.

Definition 4.5. Consider a divisorial fan Ξ on a nor-

mal projective variety Y , and let Z ⊆ Y be a prime

divisor.
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(i) The index of a vertex v ∈ ΞZ is the minimal

positive integer µ(v) such that µ(v) · v ∈ N
holds.

(ii) We call a vertex v ∈ ΞZ extremal if there is a

D ∈ Ξ with v ∈ DZ such that O(D(u)) is big

on Z for any u ∈ ((DZ − v)∨)◦. The set of all

extremal vertices v ∈ ΞZ is denoted by Ξ×Z
(iii) We call a ray ϱ ∈ ΞY extremal if there is a

D ∈ Ξ with ϱ ∈ DY such that O(D(u)) is big

on Y for any u ∈ (ϱ⊥ ∩ ω)◦. The set of all

extremal rays ϱ ∈ ΞY is denoted by Ξ×Y .

(iv) We say that the prime divisor Z is irrelevant

if Ξ×Z is empty, and we denote by Y ◦ ⊆ Y (Ξ)
the open subset obtained by removing all ir-

relevant Z .

Remark 4.6. Let Ξ be a divisorial fan on Y = Pn and

Z ⊆ Pn a prime divisor. Then every vertex v ∈ ΞZ is

extremal and a ray ϱ ∈ ΞY is extremal if and only if

ϱ ∩ deg(D) = ∅ holds for some D ∈ Ξ with ϱ ∈ DY .

As shown in [20], the extremal vertices of Ξ are in

bĳection with the invariant prime divisors of X = X (Ξ)
intersecting X0 and the extremal rays correspond to

those contained in X \ X0; see also Propositions 4.11
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and 4.12. We will denote by Dv the divisors given by

extremal vertices v ∈ Ξ×Z and by Eϱ those given by

extremal rays ϱ ∈ Ξ×Y . Then the divisor class group

Cl(X ) can be described as follows, see [20, Cor. 3.17].

Proposition 4.7. LetΞ be a divisorial fan on Y and set

X = X (Ξ). ThenCl(X ) is generated by the classes [Dv],
v ∈ Ξ×Z and [Eϱ], ϱ ∈ Ξ×Y and the image of a canonical
homomorphism Cl(Y ◦) → Cl(X ). The relations among
these generators are

∑

v∈Ξ×Z

µ(v)Dv = [Z ],
∑

ϱ∈Ξ×

〈u, vϱ〉Eϱ+
∑

Z

∑

v∈Ξ×Z

µ(v)〈u, v〉Dv = 0,

where Z runs through the prime divisors of Y , u runs

through (a basis of) the lattice M and vϱ ∈ ϱ denotes

the primitive lattice vector.

We are ready to compute the Cox ring of a T -

variety X = X (Ξ) in terms of its defining divisorial

fan Ξ and the projective variety Y carrying Ξ. Let

Z0, . . . , Zr ⊆ Y be the prime divisors having nontrivial

slices ΞZ0
, . . . ,ΞZr .
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Theorem 4.8. There is a Cl(X )-graded inclusion of
Cox rings R(Y ◦) → R(X ) and a Cl(X )-graded isomor-
phism

R(X ) �
R(Y ◦)[Sϱ, Tv; ϱ ∈ Ξ×Y , v ∈ Ξ

×
Zi
, 0 ≤ i ≤ r]

〈T µi − 1Zi ; i = 0, . . . , r〉
,

where we set T µi :=
∏

v∈Ξ×Zi
T
µ(v)
v and 1Zi ∈ R(Y ◦) de-

notes the canonical section of the prime divisor Zi ⊆ Y .

The grading is given by degTv = [Dv] and degSϱ =
[Eϱ].

As a direct consequence, we obtain the following

description of the Cox ring of a T -variety of complexity

one.

Corollary 4.9. Let Ξ be a divisorial fan on Y = P1

having non-trivial slices Ξa0
, . . . ,Ξar . Then the Cox

ring of X = X (Ξ) is given by

K[Sϱ, Tv; ϱ ∈ Ξ×Y , v ∈ Ξ
×
a0
∪̇ . . . ∪̇Ξ×ar ]〈∑r

i=0 ̙iT
µi ; ̙ ∈ Rel(ã0, . . . , ãr )

〉 ,

where ãi ∈ K
2 represents ai ∈ P

1, we set T µi :=∏
v∈Ξ×ai

T
µ(v)
v and Rel(̃a0, . . . , ãr ) is a basis for the space

of linear relations among ã0, . . . , ãr .
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Note that an appropriate choice of a basis for the

space of linear relations among ã0, . . . , ãr ∈ K
2 gives

a trinomial representation of the Cox ring as in The-

orem 1.3.

Example 4.10. Consider once more the divisorial fan

Ξ and its associated variety X (Ξ) of Example 4.4. Ac-

cording to Remark 4.6, there are no extremal rays

and all six vertices

v1, v2 ∈ Ξ{0}, v3, v4 ∈ Ξ{1}, v5, v6 ∈ Ξ{∞}

are extremal, where we have v1 = v3 = v5 = 0 ∈ N .

Proposition 4.7 shows that Cl(X (Ξ)) is freely gener-

ated by the classes of Dv1
and Dv2

. By Corollary 4.9,

the Cox ring of X (Ξ) is

R(X (Ξ)) = K[T1, . . . , T6] / 〈T1T2 + T3T4 + T5T6〉

with degT1 = degT3 = degT5 = [Dv1
] and degT2 =

degT4 = degT6 = [Dv2
]. Note that this presentation

of the Cox ring shows that X (Ξ) can be obtained as a

K∗-quotient of the Grassmannian G(2,4).
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The rest of the section is devoted to proving The-

orem 4.8, which basically means to express the in-

put data of Theorem 1.2 in terms of polyhedral di-

visors. For this, we first have to recall further de-

tails of the construction of the T -variety X (Ξ) asso-

ciated to a divisorial fan Ξ on a projective variety

Y . For every D ∈ Ξ, we have the sheaf A(D) of

normal M-graded OY -algebras. Its relative spectrum

X̃ (D) := SpecYA(D) comes with a T -action and we

have canonical morphisms

X̃ (D) → Y, X̃ (D) → X (D)

defined by OY ⊆ A(D) and A(D) = Γ(X̃ (D),O). The T -

varieties glue together X̃ (D) along the open subsets

X̃ (D ∩ D′) to a T -variety X̃ (Ξ). These gluings are

compatible with the above maps and one obtains a

commutative diagram

X̃ (Ξ)
r //

π̃
!!CC

CC
CC

CC
X (Ξ)

π
}}{

{
{

{

Y
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where r : X̃ (Ξ) → X (Ξ) is T -equivariant, birational

and proper, π̃ : X̃ (Ξ) → Y is T -invariant and the ra-

tional map π : X (Ξ) → Y is defined in codimension

two. Note that image of π̃ is given by

π̃(X̃ (Ξ)) =
⋃

D∈Ξ

Y (D) ⊆ Y.

The next step is a precise description of the T -

invariant prime divisors X (Ξ), see also [20, Prop. 3.13].

Consider an extremal vertex v ∈ Ξ×Z of D ∈ Ξ, where

Z ⊆ Y (D) is a prime divisor. These data define a

homogeneous ideal

Iv :=
⊕

u∈D∨Y∩M

Γ(Y,O(D(u)))∩{f ∈ K(Y ); ordZ (f ) > −〈u, v〉}

which turns out to be a prime ideal of height one. We

define the corresponding prime divisor Dv ⊆ X (Ξ) to

be the closure of the zero set of Iv.

Proposition 4.11. Set X := X (Ξ). The assignment

v → Dv induces a bĳection between the extremal ver-

tices of Ξ and the invariant prime divisors of X inter-

secting X0. The extremal vertices of ΞZ correspond to

the invariant prime divisors contained in π−1(Z ) and
the generic isotropy group of Dv is cyclic of order µ(v).
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Proof. We may restrict to the affine case. Consider a

proper polyhedral divisorD, the corresponding sheaf

of algebras A := A(D) and its algebra of global sec-

tions A := A(D). First we calculate the ideal of π−1(Z ) =
r(π̃−1(Z )). The inverse image ideal sheaf of O(−Z ) is

given by

O(−Z ) · A =

⊕

u∈D∨Y∩M

O(⌊D(u)⌋ − Z ).

The radical of the ideal Γ(Y,O(−Z ) · A) ⊆ A is exactly

the ideal we are looking for. It is given by book

IZ =
⊕

u∈D∨Y∩M

Γ(Y,O(D(u))) ∩ {f ; ordZ (f ) > −min〈u,DZ 〉}

=

⋂

v∈DZ

Iv.

Note that we have (Iv)u = Au if 〈u, v〉 < Z. Denote

by κ : Z̃ → Z the normalization. If ψ : Ỹ → Y is a

desingularization, then we have A(D) = A(ψ∗D) and

Iv = Ĩv, where Ĩv is the ideal in A(ψ∗D) corresponding

to the vertex v in (ψ∗D)f −1
∗ Z . Hence, in the following we

may assume that Y is smooth and thus every prime

divisor is Cartier. Then, for the corresponding affine
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subschemes V (Iv) we obtain the coordinate rings

A/Iv =

⊕

u∈(DZ−v)∨∩Mv

Γ(Y,Au)/Γ(Y,Au(−Z ))

⊆
⊕

u∈(DZ−v)∨∩Mv

Γ(Y,Au/Au(−Z ))

�

⊕

u∈(DZ−v)∨∩Mv

Γ(Z,Au |Z )

⊆
⊕

u∈(DZ−v)∨∩Mv

Γ(Z̃ , κ∗(Au |Z ))

� A(Dv).

Here, we write Au(−Z ) := Au ⊗ O(−Z ) as usual, Mv ⊆

M is the sublattice consisting of all u ∈ M with 〈u, v〉 ∈

Z and Dv is a polyhedral divisor on Z with tail cone

σv := Q≥0 · (DZ − v) and lattice M∗v ⊃ N defined via the

inclusion ı : Z ֒→ Y as follows

Dv :=
∑

W

(DW + σv) · (κ ◦ ı)
∗W.

Note that (κ ◦ ı)∗Z is defined only up to linear equiva-

lence as a divisor on Z̃ but every choice will give iso-

morphic algebras A(Dv), compare [2, Cor. 8.9]. Our

condition on the bigness of D(u) for u ∈ σ∨v implies

that Dv is indeed proper for any extremal v. Hence,
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X (Dv) is irreducible and of dimension (dimX − 1) in

this case. If v is not extremal thenDv is the pullback

of a proper polyhedral divisor on

Yv := Proj
⊕

k

Γ(Y,O(k ·
∑
i Dv(ui)))

for some ui ∈ (σ∨v )◦. But Yv is of smaller dimension

than Y , since O(Dv(ui)) � O(D(ui))|Z is not big. This

implies, that X (Dv) is of dimension

dimYv + dimT < dimY + dimT = dimX − 1.

SinceD(u) is semi-ample andAu = O(D(u)) holds,

⊕k≥0H
1(Ak·u(−Z )) is finitely generated as a module

over the ring ⊕k≥0Γ(Y,Ak·u). The long exact cohomol-

ogy sequence book

0→H0(Ak·u(−Z ))→ H0(Ak·u)→

→H0(Ak·u/(Ak·u(−Z ))→ H1(Ak·u(−Z ))→ . . .

shows that ⊕k≥0Γ(Y,Ak·u/Ak·u(−Z )) is a finitely gen-

erated module over the ring ⊕k≥0Γ(Y,Ak·u)/Γ(Y,Ak·u(−Z ))
The fact that Γ(Z̃ , κ∗(⊕uAk·u |Z )) is finitely generated

over Γ(Z,⊕uAk·u |Z ) follows from the properties of the

normalization map. Thus, A(Dv) is finitely gener-

ated over A/Iv and Dv is the image of X (Dv) under

a finite morphism f , hence, Dv is irreducible and of
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codimension one; it is not hard to see that f even is

the normalization map.

The fact that all homogeneous functions of weights

u < Mv vanish on Dv implies, that T does not act effec-

tively on Dv but with generic isotropy group M/Mv �

Z/µ(v)Z. �

Now take an extremal ray ϱ ∈ Ξ×Y with ϱ ∈ DY ,

where D ∈ Ξ. Then define the associated invariant

prime divisor Eϱ of X (Ξ) to be the closure of the zero

set of V (X (D), Iϱ), where Iϱ is the homogeneous prime

ideal of height one given by

Iϱ :=
⊕

u∈D∨Y \ϱ
⊥

Γ(Y,O(D(u))) ⊆ Γ(X (D),O).

Proposition 4.12. Set X := X (Ξ). The assignment

ϱ → Eϱ induces a bĳection between the set of ex-

tremal rays of Ξ and the invariant prime divisors of

X contained in X \ X0.

Proof. For a polyhedral divisorD, the invariant prime

divisors of X̃ contained in X̃/X̃0 correspond to the

prime ideal sheaves given by not necessarily extremal
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rays ϱ ∈ DY (1) as follows

Iϱ :=
⊕

u∈D∨Y \ϱ
⊥

O(D(u)).

This can be seen locally. Consider an affine open

subset U ⊂ Y such that D|U is trivial. Then X̃ (D|U ) ⊆
X̃ (D) is an open inclusion and we have

A(D|U ) = Γ(U,OY )[D∨Y ∩M ].

Now the claim follows from standard toric geome-

try, since the considered prime divisors correspond

to ideals I ⊂ A(D|U ) with I ∩ Γ(U,OY ) = 0.

The image under r corresponds to the ideal Iv =

Γ(Iϱ) and for the coordinate ring of the corresponding

subvariety we obtain

A(D)/Iv =
⊕

u∈ϱ⊥∩D∨Y∩M

Γ(Y,D(u)) = A(Dϱ).

Here, Dϱ :=
∑
Z p(DZ ) · Z is a polyhedral divisor on Y

with tail cone p(DY ) and lattice p(N), where p is the

projection NQ → NQ/Q · ϱ.

The fact that ϱ is extremal ensures thatDϱ is proper,

which in turn implies that V (Iϱ) has codimension

one. �
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Proof. Proof of Theorem 4.8 We first construct big

open subsets Y ′ ⊆ Y ◦ and X ′ ⊆ X0. The set Y ′ is

obtained by removing from Y ◦ all the intersections

Zi ∩ Zj, where 0 ≤ i < j ≤ r. To define X ′, denote

by Ẽ ⊆ X̃ the exceptional locus of the contraction

r : X̃ → X and set

X̃ ′ := (π−1(Y ′)∩X̃0)\Ẽ ⊆ X̃0, X ′ := r(X̃ ′) ⊆ X0.

Then π : X̃ ′ → Y ′ is surjective and r : X̃ ′ → X ′

is an isomorphism. Moreover, the T -invariant map

π′ := π ◦ r−1 factors as

X ′
π′ //

""EE
EE

EE
EE

Y ′

X ′/T

ϕ

<<yyyyyyyy

Note that ϕ is birational and injective. Thus, ϕ is a

local isomorphism and hence a separation for X ′/T .

By Proposition 4.11, the prime divisors correspond-

ing to the extremal vertices v ∈ Ξ×Zi are precisely the ir-

reducible components of the inverse image (π′)−1(Zi),
and their generic T -isotropy is of order µ(v). More-

over, by Proposition 4.12, the prime divisors in X \X0
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correspond to the extremal rays of Ξ. Now the asser-

tion follows from Theorem 1.2. �

5. Applications and Examples

We first note some algebraic properties of the Cox

ring of a variety with complexity one torus action. Re-

call the following concepts from [11, Def. 3.1]. Let K

be a finitely generated abelian group and R =
⊕

w∈K
Rw

any K-graded integral K-algebra with R∗ = K∗.

(i) We say that a nonzero nonunit f ∈ R is K-

prime if it is homogeneous and f |gh with ho-

mogeneous g, h ∈ R always implies f |g or f |h.

(ii) We say that an ideal a ⊂ R is K-prime if it is

homogeneous and for any two homogeneous

f, g ∈ R with fg ∈ a one has f ∈ a or g ∈ a.

(iii) We say that a homogeneous prime ideal a ⊂ R

has K-height d if d is maximal admitting a

chain a0 ⊂ a1 ⊂ . . . ⊂ ad = a of K-prime

ideals.

(iv) We say that the ring R is factorially graded if

every K-prime ideal of K-height one is prin-

cipal.

Now, let X be a complete normal variety with finitely

generated divisor class group and an algebraic torus
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action T × X → X of complexity one. Then Theo-

rem 1.3 provides a presentation of the Cox ring of X

as book

R(X ) �
K[S1, . . . , Sm , Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈gi ; 0 ≤ i ≤ r − 2〉
,

where the variables Sj and Tij are homogeneous with

respect to the Cl(X )-grading and the relations gi are

Cl(X )-homogeneous trinomials all having the same

degree.

Proposition 5.1. The Cox ringR(X ) is factoriallyCl(X )-
graded. In the presentation of Theorem 1.3, the gener-

ators Sk and Tij define pairwise nonassociated Cl(X )-
prime elements and R(X ) is a complete intersection.

Proof. The fact that R(X ) is factorially Cl(X )-graded

holds for any complete variety with a finitely gener-

ated Cox ring, use for example [11, Prop. 3.2]. More-

over, the variables Sk and Tij define pairwise nonas-

sociated Cl(X )-prime elements, because their divi-

sors are pairwise different HX -prime divisors, where

HX = SpecK[Cl(X )], use again [11, Prop. 3.2].

We show that R(X ) is a complete intersection. This

means to verify that R(X ) is of dimensionm+n0+. . .+

nr − (r − 1). Consider the torsor X̂ → X , and recall
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from the proof of Theorem 1.1, diagram 3.1, that we

have quotients

Ŷ0 = X̂0/G0, Ẑ0 = Ŷ0/H0, X0/T � Ẑ0/F

where G0 is an m-dimensional torus acting freely, H0

is a finite group and F is a diagonalizable group acting

freely and having the rank of Cl(X0/T ) as its dimen-

sion. In our situation, X0/T � P1(A, n) is of dimension

one and, by Proposition 2.3 has a divisor class group

of rank n0 + . . .+ nr − r. Thus, the dimension of R(X )
equals

dim(X̂0) = m+dim(Ŷ0) = m+dim(̂Z0) = m+n0+. . .+nr−r+1.

�

We come to geometric applications of this obser-

vation. Note that each complete normal variety X

with finitely generated divisor class group and a com-

plexity one torus action is rational, because X0/T �

P1(A, n) is so. Thus, the varieties X in question are

precisely the complete normal rational ones with a

torus action of complexity one. If we impose addi-

tionally the condition that any two points of X admit

a common affine neighbourhood, which holds e.g. for

projective X , then Proposition 5.1 and [11, Thm. 4.19]
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ensure that X arises from a ‘‘bunched ring’’ (R,F,Φ),
see [11, Def. 3.3, Constr. 3.4], where we may take

R = R(X ) and F = (Sk , Tij). This allows us to apply

the results provided in [11].

Corollary 5.2. LetX be a complete normal rational va-

riety with an effective algebraic torus action T ×X → X

of complexity one and suppose that any two points of

X admit a common affine neighbourhood. Then there

exists a closed embedding ı : X → X ′ into a toric vari-

ety X ′ with big torus T ′ ⊆ X ′ such that

(i) ı : X → X ′ is equivariant with respect to a T -

action on X ′ given by a monomorphism T →

T ′,

(ii) the image ı(X ) ⊆ X ′ intersects T ′ and is a com-
plete intersection of T -invariant hypersurfaces

of X ′,

(iii) for every T ′-invariant prime divisor D′ ⊆ X ′,

the inverse image ı−1(D′) ⊆ X is a prime divi-

sor,

(iv) ı : X → X ′ defines a pullback isomorphism

ı∗ : Cl(X ′)→ Cl(X ) on the level of divisor class
groups.
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Proof. Apply the construction of a toric embedding

given in [11, Constr. 3.13 and Prop. 3.14] to the defin-

ing bunched ring (R,F,Φ) of X , where R = R(X ) and

F = (Sk , Tij), and use the fact that the Sk as well as

the Tij are homogeneous with respect to a lifting of

the T -action to the torsor. �

Recall from the introduction that Ek ⊆ X are the

prime divisors supported in X \ X0, that Dij ⊆ X are

prime divisors intersecting X0 and lying over a point

ai ∈ X0/T and lij is the order of the generic isotropy

group of T along Dij.

Corollary 5.3. Let X be a complete normal rational

variety with an effective algebraic torus action T×X →

X of complexity one.

(i) The cone of divisor classes without fixed com-

ponents is given by

⋂

1≤k≤m

cone([Es],[Dij ]; s,k) ∩
⋂

0≤i≤r
1≤j≤ni

cone([Ek ],[Dst ]; (s,t),(i,j)).
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(ii) For any 0 ≤ i ≤ r, one obtains a canonical

divisor for X by

max(0, r − 1) ·
ni∑

j=0

lijDij −

m∑

k=1

Ek −
∑

i,j

Dij.

Proof. By [4, Thm. 2.3], there is a small birational

transformation X → X ′ with a projective X ′. As X

and X ′ share the same Cox ring, we may assume that

X is projective. The assertions then follow from [11,

Prop. 4.1 and Prop. 4.15]. �

Note that [20, Thm. 3.19] provides an equivalent

description of the canonical divisor in terms of the

defining divisorial fan.

The first non-trivial examples of torus actions of

complexity one are K∗-surfaces. Let us look at their

Cox rings. Orlik and Wagreich associate in [17] to any

smooth complete K∗-surface X without elliptic fixed
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points a graph of the following shape:

GFED@ABC−b0
1

GFED@ABC−b0
2

GFED@ABC−b0
n0

F+ GFED@ABCc+

�������
qqqqqq

;;
;;

;;
;

MMMMMM
...

...
...

GFED@ABCc−

MMMMMM

;;;;;;;

��
��

��
�

qqqqqq
F−

GFED@ABC−br1 GFED@ABC−br2 GFED@ABC−brnr

The vertices of this graph represent certain invari-

ant curves. The two (smooth) fixed point curves of

X occur as F+ and F− in the graph. The other ver-

tices represent the invariant irreducible contractible

curves Dij ⊆ X different from F+ and F−. The label

−bij is the self intersection number of Dij, and two of

the Dij are joined by an edge if and only if they have

a common (fixed) point. Every Dij is the closure of a

non-trivial K∗-orbit.

We show how to read off the Cox ring from the

Orlik-Wagreich graph. Suppose that X is rational.

Then F+ is rational as well and hence is a P1. De-

fine lij to be the numerator of the canceled continued
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fraction

bi1 −
1

bi2 −
1

· · · −
1

bij−1

Moreover, let ai be the point in F+ ∩ Di1 and write

ai = [bi , ci ] with bi , ci ∈ K. Then, for every 0 ≤ i ≤ r,

set k = j+1 = i+2 and define a trinomial in K[Tij; 0 ≤

i ≤ r, 1 ≤ j ≤ ni ] as follows book

gi := (ckbj − cjbk)fi + (cibk − ckbi)fj + (cjbi − cibj)fk ,

where fs := T ls1s1 · · · T
lsns
sns .

Theorem 5.4. Let X be a smooth complete rational

K∗-surface without elliptic fixed points. Then the as-

signments S± 7→ 1F± and Tij 7→ 1Dij define an isomor-

phism book

R(X ) �
K[S+, S−, Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni ]

〈gi ; 0 ≤ i ≤ r − 2〉

of Cl(X )-graded rings, where the Cl(X )-grading on
the right hand side is defined by associating to S± the

class of F± and to Tij the class of Dij.
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Proof. The open set X0 ⊆ X is obtained by removing

F+, F− and the isolated fixed points. By [17, Sec. 3.5],

the number lij is the order of the isotropy group of the

nontrivialK∗-orbit inDij. Moreover, we have a canoni-

cal morphism π : X0/K
∗ → F+, with exceptional fibers

π−1(ai) = {ai1, . . . , aini }, where aij represents the non-

trivial K∗-orbit of Dij. Thus, the assertion follows from

Theorem 1.3. �

For (possibly singular) K∗-surfaces X with elliptic

fixed points, the Cox ring can be computed as follows.

Suitably resolving gives a K∗-surface X̃ , called canon-

ical resolution, where the elliptic fixed points are re-

placed with fixed point curves. Having computed the

Cox ring R(X̃ ) as above, we easily obtain the Cox ring

R(X ). According to Theorem 1.3, we need the divi-

sors of the type Ek and Dij in X and the orders lij of

the generic isotropy groups of the Dij. Each of these

divisors is the image of a non-exceptional divisor of

the same type in X̃ ; to see this for the Dij, note that X0

is the open subset of X̃0 obtained by removing the ex-

ceptional locus of X̃ → X and thus X0/K
∗ is an open

subset of X̃0/K
∗. Moreover, by equivariance, the or-

ders lij in X are the same as in X̃ . Consequently,
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the Cox ring R(X ) is obtained from R(X̃ ) by removing

those generators that correspond to the exceptional

curves arising from the resolution.

As the intersection graphs of their resolutions are

known, see [1], the methods just outlined provide Cox

rings of (possibly singular) Gorenstein del Pezzo K∗-

surfaces X ; note that Derenthal computed in [8] the

Cox rings of the minimal resolutions X̃ without as-

suming existence of a K∗-action for the cases that X

is of degree at least 3 and R(X̃ ) is defined by a single

relation. Moreover, the divisorial fans of Gorenstein

del Pezzo K∗-surfaces X are provided in [21], which

allows us to use as well the approach via polyhedral

divisors.

Example 5.5. We consider the family Xλ of Goren-

stein Del Pezzo K∗-surfaces over K \ {0,1} of degree

one and singularity type 2D4. The canonical reso-

lution X̃λ of Xλ is obtained by minimally resolving
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the two singularities and, by [1, Thm. 8.3], its Orlik-

Wagreich graph is given as

?>=<89:;−1 ?>=<89:;−1

F+ ?>=<89:;−2
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22
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?>=<89:;−2 ?>=<89:;−1 ?>=<89:;−2

?>=<89:;−2 ?>=<89:;−1 ?>=<89:;−2

We have four points a0, . . . , a3, where {ai} = Di1 ∩ F
+.

Note that the positions of these four points on F+ � P1

may vary and the parameter λ is the cross ratio of

a0, a1, a2, a3. The Cox rings of X̃λ and Xλ are given by

R(X̃λ) =
K[S1, S2, T01, . . . , T33]

〈
T01T02+T11T

2
12T13+T21T

2
22T23,

λT11T
2
12T13+T21T

2
22T23+T31T

2
32T33

〉 ,

R(Xλ) = K[T1, . . . , T5]
/ 〈

T1T2+T
2
3+T

2
4 ,

λT2
3+T

2
4+T

2
5

〉
.

Now let us look at Xλ via its divisorial fan Ξλ. Ac-

cording to [21, Thm. 4.8], the divisorial fan Ξλ lives

on Y = P1. Its non-trivial slices lie over the points

a0, . . . , a3 ∈ Y and are given in N = Z as follows:
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−3 −2 −1 0 321

D1 D3 D2

−3 −2 −1 0 321

D1 D2

−3 −2 −1 0 321

D1 D2

−3 −2 −1 0 321

D1 D2

Ξa0
Ξa1

Ξa2
Ξa3

We compute the divisor class group Cl(Xλ). Accord-

ing to Remark 4.6, we have two extremal vertices

v1, v2 in Ξa0
and one extremal vertex vi+2 in Ξai for

i = 1,2,3. Let Di be the prime divisor associated to vi
for i = 1, . . . ,5 and denote by D0 the positive gener-

ator of Cl(Y ) = Z. Then Proposition 4.7 tells us that

the divisor class group Cl(Xλ) is ZD0 ⊕ . . .⊕ZD5 mod-

ulo the relations defined by the rows of the matrix

A =



−1 1 1 0 0 0

−1 0 0 2 0 0

−1 0 0 0 2 0

−1 0 0 0 0 2

0 −2 −1 1 1 1



The Smith Normal Form S = U ·A ·V with unimodular

transformation matrices U and V is given as

S =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0
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In particular, we conclude Cl(Xλ) � Z⊕Z/2Z⊕Z/2Z.

Moreover, computing V−1 we see that the class of D4

generates the free part and the classes of D3 − D5

and D4 − D5 generate the cyclic parts. Consulting

Theorem 4.8 gives the Cox ring

R(Xλ) = K[T1, . . . , T5]/〈T1T2 + T
2
3 + T

2
4 , λT

2
3 + T

2
4 + T

2
5 〉

whith the grading

deg(T1) = deg(T2) = (1,1,0), deg(T3) = (1,1,1),

deg(T4) = (1,0,0), deg(T5) = (1,0,1).

Proceeding as in this example, we are able to com-

pute the Cox rings of all Gorenstein del Pezzo K∗-

surfaces and their minimal resolutions. Here comes

the result for the cases of Picard number one and

two.

Theorem 5.6. LetX be a Gorenstein del Pezzo surface

of Picard number at most two admitting a nontrivialK∗-

action. The following table provides the Cox rings of X

and its minimal resolution X̃ ordered by the degree

deg(X ) and the singularity type S(X ).
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deg(X ) = 1

S(X ) R(X ) R(X̃ )

2D4 K[T1 ,...,T5]
/〈 T1T2+T

2
3
+T2

4
,

λT2
3
+T2

4
+T2

5

〉
K[S1 ,S2 ,T1 ,...,T11]

/〈 T1T2+T6T7T
2
3
+T8T9T

2
4
,

λT6T7T
2
3
+T8T9T

2
4
+T10T11T

2
5

〉

E6A2 K[T1 ,...,T4]/〈T2
1
T2+T

3
3
+T3

4
〉 K[S,T1 ,...,T11]/〈T5T

2
1
T2+T6T7T

2
8
T3

3
+T9T10T

2
11
T3

4
〉

E7A1 K[T1 ,...,T4]/〈T3
1
T2+T

4
3
+T2

4
〉 K[S,T1 ,...,T11]/〈T5T

2
6
T3

1
T2+T7T

2
8
T3

9
T3

10
T4

3
+T11T

2
4
〉

E8 K[T1 ,...,T4]/〈T5
1
T2+T

3
3
+T2

4
〉 K[S,T1 ,...,T11]/〈T5T

2
6
T3

7
T4

8
T5

1
T2+T9T

2
10
T3

3
+T11T

2
4
〉

deg(X ) = 2

S(X ) R(X ) R(X̃ )

2A3A1K[T1 ,...,T4]/〈T1T2+T
2
3
+T2

4
〉 K[S1 ,S2 ,T1 ,...,T9]/〈T5T1T2+T6T7T

2
3
+T8T9T

2
4
〉

A5A2 K[T1 ,...,T4]/〈T1T2+T
3
3
+T3

4
〉 K[S,T1 ,...,T10]/〈T1T2+T5T6T

2
7
T3

3
+T8T9T

2
10
T3

4
〉

D43A1K[S1 ,T1 ,T2 ,T3]/〈T2
1
+T2

2
+T2

3
〉 K[S1 ,S2 ,T1 ,...,T9]/〈T4T5T

2
1
+T6T4T

2
2
+T8T9T

2
3
〉

D6A1 K[T1 ,...,T4]/〈T2
1
T2+T

4
3
+T2

4
〉 K[S,T1 ,...,T10]/〈T5T

2
1
T2+T6T7T

2
8
T3

9
T4

3
+T10T

2
4
〉

E7 K[T1 ,...,T4]/〈T4
1
T2+T

3
3
+T2

4
〉 K[S,T1 ,...,T10]/〈T5T

2
6
T3

7
T4

1
T2+T8T

2
9
T3

3
+T10T

2
4
〉

2A3 K[T1 ,...,T6]
/〈 T1T2+T3T4+T

2
5
,

λT3T4+T
2
5
+T2

6

〉
K[S1 ,S2 ,T1 ,...,T10]

/〈 T1T2+T3T4+T7T8T
2
5
,

λT3T4+T7T8T
2
5
+T9T10T

2
6

〉

D5A1 K[T1 ,...,T5]/〈T1T
2
2
+T3T

2
4
+T3

5
〉 K[S,T1 ,...,T10]/〈T6T1T

2
2
+T7T3T

2
4
+T8T9T

2
10
T3

5
〉

E6 K[T1 ,...,T5]/〈T1T
3
2
+T3T

3
4
+T2

5
〉 K[S,T1 ,...,T10]/〈T6T

2
7
T1T

3
2
+T8T

2
9
T3T

3
4
+T10T

2
5
〉
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deg(X ) = 3

S(X ) R(X ) R(X̃ )

A5A1 K[T1 ,...,T4]/〈T1T2+T
4
3
+T2

4
〉 K[S,T1 ,...,T9]/〈T1T2+T5T6T

2
7
T3

8
T4

3
+T9T

2
4
〉

E6 K[T1 ,...,T4]/〈T3
1
T2+T

3
3
+T2

4
〉 K[S,T1 ,...,T9]/〈T5T

2
6
T3

1
T2+T7T

2
8
T3

3
+T9T

2
4
〉

2A2A1K[T1 ,...,T5]/〈T1T2+T3T4+T
2
5
〉 K[S1 ,S2 ,T1 ,...,T8]/〈T6T1T2+T3T4+T7T8T

2
5
〉

A32A1K[S1 ,T1 ,...,T4]/〈T1T2+T
2
3
+T2

4
〉 K[S1 ,S2 ,T1 ,...,T8]/〈T1T2+T5T6T

2
3
+T7T8T

2
4
〉

A4A1 K[T1 ,...,T5]/〈T1T
2
2
+T3T4+T

3
5
〉 K[S,T1 ,...,T9]/〈T6T1T

2
2
+T3T4+T7T8T

2
9
T3

5
〉

D5 K[T1 ,...,T5]/〈T1T
3
2
+T3T

2
4
+T2

5
〉 K[S,T1 ,...,T9]/〈T6T

2
7
T1T

3
2
+T8T3T

2
4
+T9T

2
5
〉

deg(X ) = 4

S(X ) R(X ) R(X̃ )

D5 K[T1 ,...,T4]/〈T2
1
T2+T

3
3
+T2

4
〉 K[S,T1 ,...,T8]/〈T5T

2
1
T2+T6T

2
7
T3

3
+T8T

2
4
〉

A3A1 K[T1 ,...,T5]/〈T1T2+T3T4+T
3
5
〉 K[S,T1 ,...,T8]/〈T1T2+T3T4+T6T7T

2
8
T3

5
〉

A4 K[T1 ,...,T5]/〈T1T
3
2
+T3T4+T

2
5
〉 K[S,T1 ,...,T8]/〈T6T

2
7
T1T

3
2
+T3T4+T8T

2
5
〉

D4 K[T1 ,...,T5]/〈T1T
2
2
+T3T

2
4
+T2

5
〉 K[S,T1 ,...,T8]/〈T6T1T

2
2
+T7T3T

2
4
+T8T

2
5
〉
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deg(X ) = 5

S(X ) R(X ) R(X̃ )

A3 K[T1 ,...,T5]/〈T1T
2
2
+T3T4+T

2
5
〉 K[S,T1 ,...,T7]/〈T6T1T

2
2
+T3T4+T7T

2
5
〉

A4 K[T1 ,...,T4]/〈T1T2+T
3
3
+T2

4
〉 K[S,T1 ,...,T7]/〈T1T2+T5T

2
6
T3

3
+T7T

2
4
〉

deg(X ) = 6

S(X ) R(X ) R(X̃ )

A2 K[T1 ,...,T5]/〈T1T2+T3T4+T
2
5
〉 K[S,T1 ,...,T6]/〈T1T2+T3T4+T6T

2
5
〉

Finally, we consider equivariant vector bundles

over a toric variety X arising from a fan Σ and ask for

the Cox rings of their projectivizations. We will use

Klyachko’s description [13] of equivariant reflexive

sheaves over X ; we will follow Perling’s notation [19]

in terms of families of complete increasing filtrations.

We recall the basic constructions. Let E be an

equivariant reflexive sheaf of rank r on X . Then E is

trivial over the big torus T ⊆ X . Moreover, for every

ray ϱ ∈ Σ(1), the sheaf E splits over the affine chart

Xϱ ⊆ X and hence is even trivial there. This gives us
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identifications

Γ(Xϱ,E) ⊆ Γ(T,E) = E ⊗ Γ(T,OX ) = E ⊗ K[M ]

with an r-dimensional vector space E. Fix generators

eϱ,1 ⊗ χ
uϱ,1 , . . . , eϱ,r ⊗ χ

uϱ,r for every Γ(Xϱ,E). Then E

is determined by the family of complete increasing

filtrations Eϱ(i), where ϱ ∈ Σ(1), of E defined by

Eϱ(i) := lin(eϱ,j; 〈uϱ,j, vϱ〉 ≤ i),

where vϱ ∈ ϱ denotes the primitive lattice vector. Con-

versely, given any family of complete increasing filtra-

tions Eϱ(i), where ϱ ∈ Σ(1), of E = Kr , one obtains an

equivariant reflexive sheaf E of rank r over X by defin-

ing its sections over the affine charts Xσ ⊆ X , where

σ ∈ Σ, to be

Γ(Xσ ,E) :=
⊕

u∈M


⋂

ϱ∈σ(1)

Eϱ(〈u, vϱ〉)

 ⊗ χ
u ⊆ E ⊗ K[M ].

In our first result, we compute the Cox ring of the

projectivization P(E), see [12, p. 162], of a locally free

sheaf E of rank two over a complete toric variety X

arising from a fan Σ. Let Eϱ(i), where ϱ ∈ Σ(1), be the

family of filtrations describing E, let L be the set of

one-dimensional subspaces of E occurring in these
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filtrations, for every L ∈ L fix a generator eL , and

denote by Rel(L) the space of linear relations among

the eL . Moreover, let i
ϱ
k be the smallest integer such

that dimEϱ(iϱk ) > k and set Lϱ := Eϱ(iϱ0).

Theorem 5.7. Let E be an equivariant locally free

sheaf of rank two over a complete toric variety X de-

fined by a fan Σ. Then the Cox ring of the projectiviza-

tion P(E) is given as book

R(P(E)) =
K[Sϱ, TL ; ϱ ∈ Σ(1), L ∈ L]
〈∑

L∈L λLS
LTL ; λ ∈ Rel(L)

〉 ,

where SL :=
∏

ϱ, Lϱ=L S
i
ϱ
1−i

ϱ
0

ϱ .

Example 5.8. Let T be the sheaf of sections of the

tangent bundle of the projective plane P2; then P(T ) is

the projectivized cotangent bundle. As a toric variety,

P2 is given by the complete fan in Q2 with the rays

ϱ1 = Q≥0 ·e1, ϱ2 = Q≥0 ·e2, ϱ0 = Q≥0 ·e0,

where e1, e2 ∈ Q
2 are the canonical basis vectors and

we set e0 := −e1 − e2. The filtrations of the tangent
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sheaf are given as

Eϱ(i) =



0, i < −1,

K·ϱ, i = −1,

E, i > −1.

As generators for the one-dimensional subspaces we

may choose e1, e2, e0 ∈ K
2. The linear relations be-

tween them are spanned by (1,1,1) ∈ K3. Hence, as

in Example 4.10, we obtain

R(P(T )) = K[S1, S2, S3, T1, T2, T3] / 〈T1S1+T2S2+T3S3〉.

More generally, we may calculate the Cox ring of

the projectivized cotangent bundle on an arbitrary

smooth complete toric variety X arising from a fan

Σ. We distinguish two types of rays ϱ ∈ Σ(1): those

with −ϱ < Σ(1) and those with −ϱ ∈ Σ(1). Denote by

L the set containing all rays of the first type and

one representative for every pair of the second type.

Moreover, let Rel(L) denote the tuples λ ∈ KL such

that
∑
ϱ∈L λϱvϱ = 0, where vϱ ∈ ϱ denote the primitive

generator.

Theorem 5.9. Let X be a smooth complete toric vari-

ety arising from a fan Σ, and denote by TX the sheaf
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of sections of the tangent bundle over X . Then the Cox

ring of the projectivization P(TX ) is given by

R(P(TX )) =
K[Sϱ, Tτ ; ϱ ∈ Σ(1), τ ∈ L]
〈∑

ϱ∈L λϱS
ϱTϱ; λ ∈ Rel(L)

〉 ,

where Sϱ :=


SϱS−ϱ −ϱ ∈ Σ

(1),

Sϱ else.

Remark 5.10. Let Σ be a fan in a lattice N hav-

ing rays ϱ1, . . . , ϱs as its maximal cones, Z the as-

sociated toric variety and T ⊆ Z the acting torus.

Given a primitive sublattice L ⊆ N , consider the ac-

tion of the corresponding subtorus H ⊆ T on Z . Let

P : N → N ′ := N/L denote the projection. The generic

isotropy group Hϱ ⊆ H along the toric divisor Dϱ ⊆ Z

corresponding to a ray ϱ ∈ Σ is one-dimensional if

P(ϱ) = 0 holds and finite otherwise; in the latter case

it is given by

X(Hϱ) = (lin(P(ϱ)) ∩ N ′) / P(lin(ϱ) ∩ N).

In particular, the set Z0 ⊆ Z is the toric subvari-

ety corresponding to the subfan Σ0 ⊆ Σ obtained by

removing all ϱ with P(ϱ) = {0}. For an affine chart
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Zϱ ⊆ Z0, the orbit space Zϱ/H is the affine toric vari-

ety Z ′
P(ϱ) corresponding to the ray P(ϱ) in N ′. Gluing

these Z ′
P(ϱ) along their common big torus T/H gives

the toric prevariety Z0/H.

There is a canonical separation π : Z0/H → Z ′,

where Z ′ is the toric variety defined by the fan P(Σ0) in

N ′ having {P(ϱ); ϱ ∈ Σ0} as its set of maximal cones.

Note that the inverse image π−1(DP(ϱ)) of the divisor

DP(ϱ) ⊆ Z
′ corresponding to P(ϱ) ∈ P(Σ0) is the disjoint

union of all divisors Dτ ⊆ Z0 with P(τ) = P(ϱ).

Proof. Proof of Theorem 5.7 and Theorem 5.9 In order

to use Theorem 1.2, we have to study the map π◦q ob-

tained by composing the quotient q : P(E)0 → P(E)0/T

with the separation π : P(E)0/T → Y . This done in

three steps. First we cover P(E) by affine toric charts

and describe the quotient map on these charts us-

ing Remark 5.10. Then we collect the data for The-

orem 1.2 in every chart. In the last step we will see

how this local data fit into the global picture.

Step 1: the toric charts. We may assume that the

maximal cones of Σ are just the rays ϱ ∈ Σ. On an

affine chart Xϱ any equivariant locally free sheaf E is

actually free with homogeneous generators sϱ,0, . . . , sϱ,r
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of the form sϱ,i = eϱ,i ⊗ χ
uϱ,i . Choosing an appropriate

order, we may achieve 〈uϱ,k , vϱ〉 = ik. Then P(E|Xϱ ) is

given as

P(E|Xϱ ) = ProjXϱ (S(E|Xϱ)) = ProjK[ϱ∨∩M ][sϱ,0, . . . , sϱ,r ],

where deg(sϱ,i) := 1. So, P(E|Xϱ ) is Xϱ × P
r but en-

dowed with a special Tn-action. This action can be

extended to an Tn+r-action by assigning to si the

weight (ui , bi) ∈ M × M ′ for i = 0, . . . r. Here, M ′ � Zr

and b1, . . . , br is a basis and b0 := 0. As a conse-

quence we can describe P(E|Xϱ ) as a toric variety and

the endowed Tn-action by an inclusion Tn ֒→ Tn+r ,

which corresponds to the lattice inclusion N ֒→ N ×

N ′, where N ′ := (M ′)∗.
We describe the corresponding fan in N × N ′. De-

note by b∗1, . . . , b
∗
r the dual basis in N ′ and set b∗0 :=

−
∑
b∗i . Moreover, set

ϱi := ϱ̃ + cone(b∗0, . . . , b
∗
i−1, b

∗
i+1, . . . , b

∗
r ),

ϱ̃ := Q≥0 · (vϱ,−
r∑

k=0

i
ϱ
kb
∗
k).

Then ϱ0, . . . , ϱr are the maximal cones of the fan we

are looking for. Indeed, cover P(E|Xϱ ) by the affine
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charts SpecK[ϱ∨ ∩M ][ s0

si
, . . . , sr

si
]. Then

K[ϱ∨ ∩M ][ s0

si
, . . . , sr

si
] → K[ϱ∨i ∩M ×M

′],
sj

si
7→ χ(uj−ui ,bj−bi ),

χu 7→ χ(u,0)

defines an equivariant isomorphism from P(E|Xϱ ) with

the extended torus action onto the toric variety aris-

ing from the fan just defined, see also [16, pp. 58-59].

Step 2: local quotient maps. In the setting of Re-

mark 5.10, the map P : N × N ′ → N ′ is the projection

to the second factor and we deduce that the separa-

tion of P(E|Xϱ )0/T has the fan Σ′ consisting of the rays

Q≥0 · b
∗
0, . . . ,Q≥0 · b

∗
r , P(ϱ̃) and the trivial cone.

If E is an equvariant locally free sheaf of rank two,

then we obtain ϱ̃ = Q≥0 · (vϱ, (i1 − i0)b0) and Σ′ is the

unique fan ∆ of P1. If E is the sheaf of sections of the

tangent bundle of X , then we have E = N ⊗K and the

filtrations

Eϱ(i) =



0, i < −1,

K · ϱ, i = −1,

E, i > −1.
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Thus, by the chosen order of the sϱ,i , we obtain ϱ̃ =

Q≥0 · (vϱ, b0) and Σ′ = {0,Q≥0 ·b
∗
0, . . . ,Q≥0 ·b

∗
r }. Hence,

Σ
′ is a subfan of a fan ∆ with X∆ � P

r and we have a

rational toric map pϱ : P(E|Xϱ ) d P
r , which is defined

on a big open subset.

Now we locally collect the data for Theorem 1.2

using Remark 5.10. In the preimage P−1(Q≥0 · b0),
we find the rays τ := Q≥0 · (0, b0) and ϱ̃. Hence, the

prime divisor in Y = XΞ′ corresponding to Q≥0 ·b0 has

two invariant prime divisors in its preimage under the

map π ◦ q.

The lattice elements of τ are mapped onto the lat-

tice elements of Q≥0 · b0, hence T acts effectively on

the corresponding prime divisor. The lattice gener-

ated by P(ϱ̃∩ (N ×N ′)) has index i
ϱ
1 − i

ϱ
0 in Z · b0. This

implies that the corresponding prime divisor has a

generic isotropy group of order i1 − i0 (which is equal

to 1 in the case of TX ).

Step 3: the global picture. We identify P(E∗) with

X∆ via the isomorphism ϕϱ induced by the following

homomorphism of the homogeneous coordinate rings

S(E) → K[χb0 , . . . , χbr ], ei 7→ χbi .
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Note that the map ϕϱ ◦ pϱ (considered as a rational

map P(E) d P(E∗)) no longer depends on the choice

of ϱ and sϱ,0, . . . , sϱ,r , because over P(E|T ) it is just the

projection P(E|T ) = P(E∗) × T → P(E∗) given by

S(E) ֒→ K[M ][sϱ,0, . . . , sϱ,r ] = Γ(T, S(E))
ei 7→ χ−ui · sϱ,i = ei ⊗ χ

0 .

Note that ϕϱ maps the prime divisor corresponding to

the ray Q≥0 · b0 onto Eϱ(i0)⊥ = e⊥ϱ,0 ⊂ P(E
∗). Putting

things together we obtain

• A ray ϱ with i
ϱ
0 = i

ϱ
1 corresponding to a divisor

outside of P(E)0.

• Since (π ◦ q)|P(E|T ) is the equivariant projec-

tion P(E|T ) = P(E∗) × T → P(E∗) the closure

(π ◦ q)−1(Z ) ∩ P(E|T ) is always a prime divisor

with effective T -action.

• If i
ϱ
0 < i

ϱ
1 the ray ϱ corresponds to an addi-

tional invariant prime divisor in the preimage

of Eϱ(i0)⊥ with generic isotropy group of order

i1 − i0.

Inspecting the filtrations for TX , we see that i
ϱ
1−i

ϱ
0 = 1

for every ray ϱ and Eϱ(iϱ0) = Eτ(iτ0) if and only if τ = ±ϱ.

Using Theorem 1.2, we obtain the desired results. �
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