Hendrik Süß
Hendrik Suess
deutsch english по-русски

Veröffentlichte Artikel

  1. Moraga, J., and Süß, H. (2024). Bounding toric singularities with normalized volume. Bulletin of the London Mathematical Society, 56(6), 2212–2229. [online] [arXiv]
  2. Fujita, K., Liu, Y., Süss, H., Zhang, K., and Zhuang, Z. (2023). On the Cheltsov-Rubinstein conjecture. In Birational geometry, Kähler-Einstein metrics and degenerations. Proceedings of the conferences, Moscow, Russia, April 8–13, 2019, Shanghai, China, June 10–14, 2019, Pohang, South Korea, November 18–22, 2019 (pp. 865–883). Cham: Springer. [online] [arXiv]
  3. Hering, M., Nill, B., and Süß, H. (2022). Stability of tangent bundles on smooth toric Picard-rank-\(2\)varieties and surfaces. In Facets of algebraic geometry. A collection in honor of William Fulton’s 80th birthday. Volume 2 (pp. 1–25). Cambridge: Cambridge University Press. [online] [arXiv]
  4. Süß, H. (2022). Orbit spaces of maximal torus actions on oriented Grassmannians of planes. In Interactions with lattice polytopes. Selected papers based on the presentations at the workshop, Magdeburg, Germany, September 14–16, 2017 (pp. 335–349). Cham: Springer. [online] [arXiv]
  5. Süß, H. (2021). Toric topology of the Grassmannian of planes in \(\mathbb C^5\)and the del Pezzo surface of degree 5. Moscow Mathematical Journal, 21(3).
  6. Süß, H. (2021). On irregular Sasaki-Einstein metrics in dimension 5. Sbornik: Mathematics, 212(9), 1261–1278. [online]
  7. Ilten, N. O., and Süß, H. (2020). Fano Schemes for Generic Sums of Products of Linear Forms. Journal of Algebra and Its Applications, 19(7). [online]
  8. Michalek, M., Perepechko, A., and Süß, H. (2018). Flexible affine cones and flexible coverings. Mathematische Zeitschrift, 290(3-4), 1457–1478. [online]
  9. Cable, J., and Süß, H. (2018). On the classification of Kähler-Ricci solitons on Gorenstein del Pezzo surfaces. European Journal of Mathematics, 4, 137–161. [online]
  10. Ilten, N. O., and Süß, H. (2017). K-Stability for Fano Manifolds with Torus Action of Complexity 1. Duke Mathematical Journal, 166(1), 177–204. [online] [arXiv]
  11. Achinger, P., Ilten, N. O., and Süß, H. (2017). F-Split and F-Regular Varieties with a Diagonalizable Group Action. Journal of Algebraic Geometry, 26, 603–654. [online]
  12. Ilten, N. O., and Süß, H. (2015). Equivariant Vector Bundles on T-Varieties. Transformation Groups, 20(4), 1–31. [online] [arXiv]
  13. Süß, H. (2014). Fano threefolds with 2-torus action – a picture book. Documenta Mathematica, 19, 905–914.
  14. Liendo, A., and Süß, H. (2013). Normal singularities with torus actions. Tohoku Mathematical Journal, 65(1), 105–130. [online] [arXiv]
  15. Arzhantsev, I., Perepechko, A., and Süß, H. (2013). Infinte transitivity on universal torsors. Journal of the London Mathematical Society, 89(3), 762–778. [online]
  16. Gonzalez, J., Hering, M., Payne, S., and Süß, H. (2012). Cox rings and pseudoeffective cones of projectivized toric vector bundles. Algebra & Number Theory, 6(5). [online] [arXiv]
  17. Altmann, K., Ilten, N. O., Petersen, L., Süß, H., and Vollmert, R. (2012). The geometry of T-Varieties. In P. Pragacz (Ed.), Contributions to Algebraic Geometry – a tribute to Oscar Zariski (pp. 17–69). [online]
  18. Hausen, J., Herppich, E., and Süß, H. (2011). Multigraded Factorial Rings and Fano varieties with torus action. Documenta Mathematica, 16, 71–109.
  19. Ilten, N. O., and Süß, H. (2011). Polarized complexity-1 T-varieties. Michigan Mathematical Journal, 60(3), 561–578. [online]
  20. Petersen, L., and Süß, H. (2011). Torus invariant divisors. Israel Journal of Mathematics, 182, 481–505. [online]
  21. Hausen, J., and Süß, H. (2010). The Cox ring of an algebraic variety with torus action. Advances in Mathematics, 225(2), 977–1012. [online]
  22. Ilten, N. O., and Süß, H. (2010). Algebraic geometry codes from polyhedral divisors. Journal of Symbolic Computation, 45(7), 734–756. [online]
  23. Martin, B., and Süß, H. (2009). Milnor algebras could be isomorphic to modular algebras. Journal of Symbolic Computation, 44(9), 1268–1279. [online]
  24. Altmann, K., Hausen, J., and Süß, H. (2008). Gluing affine torus actions via divisorial fans. Transformation Groups , 13(2), 215–242. [online]

Preprints

  1. Ross, J., Süß, H., and Wannerer, T. (2023). Dually Lorentzian Polynomials. [arXiv]
  2. Hättig, D., Hausen, J., and Süß, H. (2023). Log del Pezzo \(\mathbb C^*\)-surfaces, Kähler-Einstein metrics, Kähler-Ricci solitons and Sasaki-Einstein metrics. [arXiv]
  3. Liu, Y., Moraga, J., and Süß, H. (2022). On the boundedness of singularities via normalized volume. [arXiv]
  4. Süß, H. (2008). Canonical divisors on T-varieties. In ArXiv e-prints. [arXiv]

Bücher

  1. Araujo, C., Castravet, A.-M., Cheltsov, I., Fujita, K., Kaloghiros, A.-S., Martinez-Garcia, J., Shramov, C., Süß, H., and Viswanathan, N. (2023). The Calabi problem for Fano threefolds (Vol. 485). Cambridge: Cambridge University Press. [online]